Abstract:
Apparatus and methods are provided for treating female urinary incontinence by applying a form of energy to tissue in the vicinity of the urethra and/or bladder outlet to change tissue compliance without substantially narrowing the urethral and/or bladder outlet lumen. The apparatus comprises an elongated shaft having a means for treating urethral tissue and an expandable member deployable distal of the means for treating. The expandable member is configured to be anchored against the bladder outlet to dispose the means for treating at a desired treatment site in the urethra using only tactile feedback. The means for treating may include a needleless RF electrode, an ultrasound transducer, or a cryogenic probe configured to be advanced through a hollow needle, each of which are designed to reduce or eliminate symptoms associated with urinary incontinence.
Abstract:
A catheter with ablation and potential sensing capabilities is adapted for outer circumferential contact with an opening of a tubular region and inner circumferential contact within the tubular region. The catheter has a proximal electrode assembly and a distal electrode assembly for ablation of an ostium and potential sensing inside the pulmonary vein so that it is possible to obtain ECG signals inside a pulmonary vein when ablating around the ostium. The distal electrode assembly has an elongated member defining a longitudinal axis and a plurality of spines surrounding the member and converging at their proximal and distal ends, where each spine has at least one electrode and a curvature so that the spine bows radially outwardly from the member. The proximal electrode assembly has a proximal electrode assembly has an elongated member configured with a generally radial portion and a generally circular portion generally transverse to the catheter axis, where the generally circular portion comprising a plurality of electrodes. The control handle advantageously allows a user to manipulate a tensile member for changing the curvature of the spine.
Abstract:
A method of autonomously preventing or reducing the affects of roof impact in automotive applications, including the steps of determining a vehicle condition indicative of an imminent roof impact, and modifying a vehicular seat or roof structure, or deploying a netting as a result thereof, wherein active material actuation is preferably utilized to effect the same.
Abstract:
An electrosurgical system preferably used for denervation procedures of nerve tissue has a control unit and a pluggable electrode assembly. The electrode assembly has a disposable cannula and a preservable supply electrode assembly. The cannula has a tubular body that projects axially from a pointed distal end for piercing tissue to a proximal end engaged to a first coupling assembly of the cannula. The supply electrode assembly has a second coupling assembly and a supply electrode that projects axially and removably into a through-bore of the body when in an operating state. The first and second coupling assemblies are configured to releasably interlock to prevent clockwise and counterclockwise rotation of the supply electrode in the body.
Abstract:
Implantable tissue structure modification devices are provided. Aspects of the tissue structure modification devices include first and second tissue securers separated by a contraction region, wherein the device is configured to be implanted at a cardiac location and assume a first constrained length that is longer than a second relaxed length. Also provided are methods of using the devices for tissue structure modification, as well as delivery systems and kits that find use in the methods. The devices and methods of the invention find use in a variety of different applications, including valve (e.g., mitral valve) structure modification.
Abstract:
A forceps includes an end effector assembly. The end effector assembly includes first and second jaw members. At least one of the jaws is moveable with respect to the other between a spaced-apart position and at least one approximated position for grasping tissue therebetween. At least one of the jaw members is adapted to connect to a source of energy for sealing tissue disposed between the jaw members. A chamber is defined within and extends longitudinally along at least one of the jaw members. The chamber is configured to retain a fluid therein and includes a series of apertures disposed on a tissue-facing surface thereof such that, upon application of energy to the jaw member(s), fluid within the chamber is heated to thermally expand within the chamber and forcefully exit the apertures to divide tissue disposed between the jaw members.
Abstract:
Electric field delivery and ablation of target tissue regions, including cancerous cells and solid tumors. Methods and systems include delivering an electric field to a target tissue, and may include positioning a first electrode or plurality to at least partially define a first treatment volume in the target tissue; positioning a second electrode or plurality to at least partially define a second treatment volume, the first volume is disposed in the second volume; and establishing a first current flow extending through the first volume and a second current flow extending through the second volume.
Abstract:
A tissue electrode assembly includes a membrane configured to form an expandable, conformable body that is deployable in a patient. The assembly further includes a flexible circuit positioned on a surface of the membrane and comprising at least one base substrate layer, at least one insulating layer and at least one planar conducting layer. An electrically-conductive electrode covers at least a portion of the flexible circuit and a portion of the surface of the membrane not covered by the flexible circuit, wherein the electrically-conductive electrode is foldable upon itself with the membrane to a delivery conformation having a diameter suitable for minimally-invasive delivery of the assembly to the patient.
Abstract:
The present invention generally relates to the field of prostheses for surgical applications, to methods of their manufacturing and to methods of treating a patient by implanting them into a patient. More particularly, the present invention relates to prostheses having a multi-layered sheet structure and their use in hernia repair, the repair of anatomical defects of the abdominal wall, diaphragm, and chest wall, correction of defects in the genitourinary system, and repair of traumatically damaged organs such as the spleen, liver or kidney.
Abstract:
An ultrasound system has an ultrasound transducer having a transducer housing and a horn provided at the distal end of the transducer housing, an ultrasound transmission member, a sonic connector that is connected to the horn and the proximal end of the ultrasound transmission member, and a catheter knob having a proximal end that is coupled to the distal end of the transducer housing. The catheter knob has a proximal bore that houses the sonic connector. The system also includes a nesting piece that is retained inside the proximal bore of the catheter knob. The nesting piece can be moved from a first position where the sonic connector is received inside the nesting piece to a second position where the sonic connector is separated from the nesting piece when ultrasound energy is being propagated through the ultrasound transmission member.