摘要:
A fin field-effect transistor (finFET) device having reduced capacitance, access resistance, and contact resistance is formed. A buried oxide, a fin, a gate, and first spacers are provided. The fin is doped to form extension junctions extending under the gate. Second spacers are formed on top of the extension junctions. Each is second spacer adjacent to one of the first spacers to either side of the gate. The extension junctions and the buried oxide not protected by the gate, the first spacers, and the second spacers are etched back to create voids. The voids are filled with a semiconductor material such that a top surface of the semiconductor material extending below top surfaces of the extension junctions, to form recessed source-drain regions. A silicide layer is formed on the recessed source-drain regions, the extension junctions, and the gate not protected by the first spacers and the second spacers.
摘要:
A method for fabricating an FET device is disclosed. The method includes Fin-FET devices with fins that are composed of a first material, and then merged together by epitaxial deposition of a second material. The fins are vertically recesses using a selective etch. A continuous silicide layer is formed over the increased surface areas of the first material and the second material, leading to smaller resistance. A stress liner overlaying the FET device is afterwards deposited. An FET device is also disclosed, which FET device includes a plurality of Fin-FET devices, the fins of which are composed of a first material. The FET device includes a second material, which is epitaxially merging the fins. The fins are vertically recessed relative to an upper surface of the second material. The FET device furthermore includes a continuous silicide layer formed over the fins and over the second material, and a stress liner covering the device.
摘要:
A first nanoscale self-aligned self-assembled nested line structure having a sublithographic width and a sublithographic spacing and running along a first direction is formed from first self-assembling block copolymers within a first layer. The first layer is filled with a filler material and a second layer is deposited above the first layer containing the first nanoscale nested line structure. A second nanoscale self-aligned self-assembled nested line structure having a sublithographic width and a sublithographic spacing and running in a second direction is formed from second self-assembling block copolymers within the second layer. The composite pattern of the first nanoscale nested line structure and the second nanoscale nested line structure is transferred into an underlayer beneath the first layer to form an array of structures containing periodicity in two directions.
摘要:
Asymmetric FET devices, and a method for fabricating such asymmetric devices on a fin structure is disclosed. The fabrication method includes disposing over the fin a high-k dielectric layer followed by a threshold-modifying layer, performing an ion bombardment at a tilted angle which removes the threshold-modifying layer over one of the fin's side-surfaces. The completed FET devices will be asymmetric due to the threshold-modifying layer being present only in one of two devices on the side of the fin. In an alternate embodiment further asymmetries are introduced, again using tilted ion implantation, resulting in differing gate-conductor materials for the two FinFET devices on each side of the fin.
摘要:
A compact semiconductor structure including at least one FET located upon and within a surface of a semiconductor substrate in which the at least one FET includes a long channel length and/or a wide channel width and a method of fabricating the same are provided. In some embodiments, the ordered, nanosized pattern is oriented in a direction that is perpendicular to the current flow. In such an embodiment, the FET has a long channel length. In other embodiments, the ordered, nanosized pattern is oriented in a direction that is parallel to that of the current flow. In such an embodiment, the FET has a wide channel width. In yet another embodiment, one ordered, nanosized pattern is oriented in a direction perpendicular to the current flow, while another ordered, nanosized pattern is oriented in a direction parallel to the current flow. In such an embodiment, a FET having a long channel length and wide channel width is provided.
摘要:
A method of forming a semiconductor device is provided, in which the dopant for the source and drain regions is introduced from a doped dielectric layer. In one example, a gate structure is formed on a semiconductor layer of an SOI substrate, in which the thickness of the semiconductor layer is less than 10 nm. A doped dielectric layer is formed over at least the portion of the semiconductor layer that is adjacent to the gate structure. The dopant from the doped dielectric layer is driven into the portion of the semiconductor layer that is adjacent to the gate structure. The dopant diffused into the semiconductor provides source and drain extension regions.
摘要:
A device and method for inducing stress in a semiconductor layer includes providing a substrate having a dielectric layer formed between a first semiconductor layer and a second semiconductor layer. A removable buried layer is provided on or in the second semiconductor layer. A gate structure with side spacers is formed on the first semiconductor layer. Recesses are formed down to the removable buried layer in areas for source and drain regions. The removable buried layer is etched away to form an undercut below the dielectric layer below the gate structure. A stressor layer is formed in the undercut, and source and drain regions are formed.
摘要:
A method and structure for forming a field effect transistor with reduced contact resistance are provided. The reduced contact resistance is manifested by a reduced metal semiconductor alloy contact resistance and a reduced conductively filled via contact-to-metal semiconductor alloy contact resistance. The reduced contact resistance is achieved in this disclosure by texturing the surface of the transistor's source region and/or the transistor's drain region. Typically, both the source region and the drain region are textured in the present disclosure. The textured source region and/or the textured drain region have an increased area as compared to a conventional transistor that includes a flat source region and/or a flat drain region. A metal semiconductor alloy, e.g., a silicide, is formed on the textured surface of the source region and/or the textured surface of the drain region. A conductively filled via contact is formed atop the metal semiconductor alloy.
摘要:
In producing complementary sets of metal-oxide-semiconductor (CMOS) field effect transistors, including nMOS and pMOS transistors), carrier mobility is enhanced or otherwise regulated through the use of layering various stressed films over either the nMOS or pMOS transistor (or both), depending on the properties of the layer and isolating stressed layers from each other and other structures with an additional layer in a selected location. Thus both types of transistors on a single chip or substrate can achieve an enhanced carrier mobility, thereby improving the performance of CMOS devices and integrated circuits.
摘要:
The present disclosure provides a method of forming a plurality of semiconductor devices, wherein low-k dielectric spacers and a stress inducing liner are applied to the semiconductor devices depending upon the pitch that separates the semiconductor devices. In one embodiment, a first plurality of first semiconductor devices and a second plurality of semiconductor devices is provided, in which each of the first semiconductor devices are separated by a first pitch and each of the second semiconductor devices are separated by a second pitch. The first pitch separating the first semiconductor devices is less than the second pitch separating the second semiconductor devices. A low-k dielectric spacer is formed adjacent to gate structures of the first semiconductor devices. A stress inducing liner is formed on the second semiconductor devices.