Abstract:
This disclosure provides systems, methods and apparatus including devices that include layers of passivation material covering at least a portion of an exterior surface of a thin film component within a microelectromechanical device. The thin film component may include an electrically conductive layer that connects via an anchor to a conductive surface on a substrate. The disclosure further provides processes for providing a first layer of passivation material on an exterior surface of a thin film component and for electrically connecting that thin film component to a conductive surface on a substrate. The disclosure further provides processes for providing a second layer of passivation material on any exposed surfaces of the thin film component after release of the microelectromechanical device.
Abstract:
This disclosure provides systems, methods and apparatus for a power supply module capable of providing power to a display apparatus. In one aspect, the power supply module can include a power supply controller that is capable executing commutation cycles, where each commutation cycle includes energizing an inductor for a first time period and then allowing the energized inductor to supply power to the display apparatus for a second time period. The power supply module can operate in active-high and active-low states, in which the power supply module executes commutation cycles, and a suspend state, in which no commutation cycles are executed. The power supply module transitions between these states based in part on the value of the output voltage. A peak current value is varied such that that the power supply module converges to operating in the active-high and active-low states after peak current demand is met.
Abstract:
In one innovative aspect of the disclosure, a method includes patterning a first region and a first portion of a second region of a substrate using a first reticle. The method also includes patterning the second region and a first portion of the first region using a second reticle. The method additionally includes forming a first array of first patterned elements based on the patterning by the first reticle, and forming a second array of second patterned elements based on the patterning by the second reticle. In some implementations, each of the first and the second arrays are incomplete in each of the first portions. However, the first patterned elements in the first portion of the second region are complementary to the second patterned elements in the first portion of the second region. Similarly, the first patterned elements in the first portion of the first region are complementary to the second patterned elements in the first portion of the first region. In some such implementations, the combination of the first array and the second array form a complete array of patterned elements.
Abstract:
This disclosure provides systems, methods and apparatus including microelectromechanical system microphones. In one aspect, the systems include a substrate made of a low dielectric material, such as glass. A layer of semiconductor material extends, substantially continuously over a surface of the substrate and includes an array of display elements that modulate light to form an image and a movable diaphragm that detects acoustic signals. The diaphragm is held away from the substrate by springs that include beams having an aspect ratio of about four to one.
Abstract:
This disclosure provides systems, methods and apparatus for reducing flicker in display devices. In one image formation process, the controller can determine a number of subframes to be displayed for a subfield based on a temperature of a display apparatus. In some implementations, the controller can determine dithering parameters based on the determined number of subframes, and perform dithering on pixel intensity values based on the determined dithering parameters. In some implementations, a vector error diffusion technique can be utilized for performing dithering. In some implementations the controller can determine drive voltages for light modulators and drive currents for light sources used for displaying the subframes, based on the temperature of the display apparatus.
Abstract:
[PROBLEM] To provide a display device capable of improving the transmittance of light at an opening that passes light while maintaining high reflectivity in a reflective layer. [RESOLUTION MEANS] Use a metal film and an reflection increasing film to configure a reflective layer provided in an element substrate to effectively utilize light of a light source. Leave a silicon nitride film that is one portion of the reflection increasing film in the opening that passes the light of the light source while removing the metal film. At this time, the film thickness of the silicon nitride film in the reflection increasing film is ¼ the wavelength of incident light and, on the other hand, the film thickness of the silicon nitride film in the opening is ½ the wavelength of the incident light. The silicon nitride film that is one portion of the reflection increasing film and a passivation film provided in a top layer of an interlayer dielectric film are laminated in the opening to achieve this structure.
Abstract:
This disclosure provides systems, methods and apparatus for actuating an electromechanical systems (EMS)-based light modulator. An actuator for an EMS-based light modulator can be formed from the combination of a drive electrode, an anchored shutter electrode, and a suspended shutter electrode. A parallel plate portion of the drive electrode along with the suspended shutter electrode form a parallel plate portion of the actuator. A zipper portion of the drive electrode and the anchored shutter electrode form a zipper portion of the actuator.
Abstract:
This disclosure provides systems, methods and apparatus for providing relatively thinner and less stiff compliant beams for a shutter assembly. A protective coating is deposited and patterned over the shutter assembly before it is released from a sacrificial mold over which the shutter assembly is formed. Because some primary surfaces of the compliant beams are in contact with the sacrificial mold, these primary surfaces are not coated with the protective coating. Therefore, when the shutter assembly is finally released, the resulting compliant beams are relatively thinner and less stiff providing a reduction in an actuation voltage used to operate the shutter assembly. In some instances, the protective coating is patterned into discontinuous segments before release.
Abstract:
[PROBLEM] To provide substantially the same voltage to a shutter electrode and a pair of control electrodes, and to prevent degradation of the mechanical shutter, during a discharge period in a movable shutter system in an image display device. [RESOLUTION MEANS] A plurality of pixels are provided each having a mechanical shutter, wherein the mechanical shutter comprises a shutter electrode and first and second control electrodes provided in a pair with respect to the shutter electrode; and the display device displays images by electrically controlling a position of the shutter electrode; wherein the display device comprises a discharge period and a display period, and in the display period, a low voltage drive voltage of VL, or a high voltage drive voltage of VH with a voltage higher than the low voltage drive voltage of VL, is supplied to the shutter electrode, the first control electrode, and the second control electrode, and |Vs−Vp1|≦(VH−VL)/10, and |Vs−Vp2|≦(VH−VL)/10, where Vs is a voltage supplied to the shutter electrode, Vp1 is a voltage supplied to the first control electrode, and Vp2 is a voltage supplied to the second control electrode.
Abstract:
A device includes a first substrate formed of a first material and a plurality of electromechanical devices formed upon a surface of the first substrate. The device also includes an integrated circuit (IC) chip bonded to the surface of the first substrate where the integrated circuit chip is formed of a material selected from a group consisting of the first material or a material having a coefficient of thermal expansion (CTE) that is substantially similar to the CTE of the first material.