Abstract:
A capacitor has a variable capacitance settable by a bias voltage. A method for setting the bias voltage including the steps of: (a) injecting a constant current to bias the capacitor; (b) measuring the capacitor voltage at the end of a time interval; (c) calculating the capacitance value obtained at the end of the time interval; (d) comparing this value with a desired value; and (e) repeating steps (a) to (d) so as long as the calculated value is different from the set point value. When calculated value matches the set point value; the measured capacitor voltage is stored as a bias voltage to be applied to the capacitor for setting the variable capacitance.
Abstract:
A vertical power component includes a doped silicon substrate of a first conductivity type. A local well of a second conductivity type extends from an upper surface of the substrate. A passivation structure coats a peripheral region of the upper surface side of the substrate surrounding the well. This passivation structure includes, on top of and in contact with the peripheral substrate region, a first region made of a first passivation material and a second region made of a second passivation material. The second region generates, in a surface region of the substrate in contact with said second region, a local increase of the concentration of majority carriers in the substrate.
Abstract:
An electrostatic discharge protection device includes first and second diodes series-connected between first and second connection terminals. A third connection terminal is coupled to a junction of the first and second diodes. A capacitor is connected in parallel with the first and second diodes between the first and second terminals.
Abstract:
A first capacitor has a capacitance adjustable to a set point value by application of a bias voltage. A second capacitor also has a capacitance adjustable to a set point value by application of a bias voltage. The first and second capacitors are arranged to receive the same bias voltage generated by a control circuit. The control circuit receiving the set point value as an input and generates that bias voltage in response to a quantity representative of a capacitance of the second capacitor.
Abstract:
A surface-mount chip is formed by a silicon substrate having a front surface and a side. The chip includes a metallization intended to be soldered to an external device. The metallization has a first portion covering at least a portion of the front surface of the substrate and a second portion covering at least a portion of the side of the substrate. A porous silicon region is included in the substrate to separating the second portion of the metallization from the rest of the substrate.
Abstract:
A rectifying circuit includes a first diode coupled between a first terminal configured to receive application of an A.C. voltage and a first terminal configured to deliver a rectified voltage; and an anode-gate thyristor coupled between a second terminal configured to receive application of the A.C. voltage and a second terminal configured to deliver the rectified voltage, wherein an anode of the anode-gate thyristor is connected to the second terminal configured to deliver the rectified voltage.
Abstract:
A bidirectional power switch includes first and second thyristors connected in antiparallel between first and second conduction terminals of the switch. The first thyristor is of an anode-gate thyristor, and the second thyristor is of a cathode-gate thyristor. The gates of the first and second thyristors are coupled to a same control terminal of the switch by respective dipole circuits. At least one of the dipole circuits is formed by at least one diode or at least one resistor.
Abstract:
A bidirectional switch formed in a substrate includes first and second main vertical thyristors in antiparallel connection. A third auxiliary vertical thyristor has a rear surface layer in common with the rear surface layer of the first thyristor. A peripheral region surrounds the thyristors and connects the rear surface layer to a layer of the same conductivity type of the third thyristor located on the other side of the substrate. A metallization connects the rear surfaces of the first and second thyristors. An insulating structure is located between the rear surface layer of the third thyristor and the metallization. The insulating structure extends under the periphery of the first thyristor. The insulating structure includes a region made of an insulating material and a complementary region made of a semiconductor material.
Abstract:
An acoustic galvanic isolation device includes a substrate capable of transmitting an acoustic wave. A first network of vibrating membrane electroacoustic transducers is arranged on a first surface of the substrate. A second network of vibrating membrane electroacoustic transducers is arranged on a second opposite surface of the substrate. An effective thickness of the substrate exhibits a gradient between the first and second surfaces with respect to propagating the acoustic wave.
Abstract:
A device includes passive radio frequency components formed of portions of metal layers separated by insulating layers and crossed by vias. The insulating layers are positioned on an upper surface of an insulating substrate. Islands of a semiconductor material extend into the insulating substrate from the upper surface. Active integrated circuit components are formed in the islands.