摘要:
In semiconductor integrated circuit devices having a hybrid dielectric layer and methods of fabricating the same, the hybrid dielectric layer includes a lower dielectric layer, an intermediate dielectric layer and an upper dielectric layer which are sequentially stacked. The lower dielectric layer contains hafnium (Hf) or zirconium (Zr). The upper dielectric layer also contains Hf or Zr. The intermediate dielectric layer is formed of a material layer having a voltage dependent capacitance variation lower than that of the lower dielectric layer.
摘要:
In some embodiments, an integrated circuit device includes a substrate and an interlevel-insulating layer on the substrate that has a hole therein that exposes the substrate. A unitary lower electrode of a capacitor is disposed on the substrate and has a contact plug portion thereof that is disposed in the hole. A dielectric layer is on the lower electrode and an upper electrode of the capacitor is on the dielectric layer. In other embodiments, an integrated circuit device includes a substrate and an interlevel-insulating layer on the substrate that has a hole therein that exposes the substrate. A barrier layer is disposed on the exposed portion of the substrate and on sidewalls of the interlevel-insulating layer. A contact plug is disposed in the hole on the barrier layer. A lower electrode of a capacitor is disposed on the contact plug and engages the contact plug at a boundary therebetween. A dielectric layer is on the lower electrode and an upper electrode of the capacitor is on the dielectric layer.
摘要:
In a capacitor, and a method of fabricating the same, the capacitor includes a lower electrode, a dielectric layer on the lower electrode, and an upper electrode on the dielectric layer, wherein the dielectric layer includes a lower dielectric region contacting the lower electrode, an upper dielectric region contacting the upper electrode, and at least one middle dielectric region between the lower dielectric region and the upper dielectric region, the at least one middle dielectric region having a less crystalline region than both the lower dielectric region and the upper dielectric region.
摘要:
In some embodiments, an integrated circuit device includes a substrate and an interlevel-insulating layer on the substrate that has a hole therein that exposes the substrate. A unitary lower electrode of a capacitor is disposed on the substrate and has a contact plug portion thereof that is disposed in the hole. A dielectric layer is on the lower electrode and an upper electrode of the capacitor is on the dielectric layer. In other embodiments, an integrated circuit device includes a substrate and an interlevel-insulating layer on the substrate that has a hole therein that exposes the substrate. A barrier layer is disposed on the exposed portion of the substrate and on sidewalls of the interlevel-insulating layer. A contact plug is disposed in the hole on the barrier layer. A lower electrode of a capacitor is disposed on the contact plug and engages the contact plug at a boundary therebetween. A dielectric layer is on the lower electrode and an upper electrode of the capacitor is on the dielectric layer.
摘要:
In a method for forming capacitors of semiconductor devices, a contact plug penetrating an interlayer dielectric (ILD) is formed on a semiconductor substrate. A supporting layer, an etch stop layer, and a molding layer are sequentially formed on the semiconductor substrate where the contact plug is formed. The molding layer is patterned to form a molding pattern. At this time, the molding pattern has an opening exposing an etch stop layer over the contact plug. Next, an adhesive spacer is formed on sidewalls of the opening. The etch stop layer and the supporting layer, which are exposed through the opening where the adhesive spacer is formed, are successively patterned. Thus, the etch stop pattern and the supporting pattern are formed to expose the contact plug. A lower electrode and a sacrificial pattern are formed to sequentially fill a hole region surrounded by sidewalls of the adhesive spacer, the etch stop pattern, and the supporting pattern. After removing the molding pattern and the sacrificial pattern, the adhesive spacer is removed. At this time, the adhesive spacer is composed of a material having good adhesion and high etch selectivity with respect to the etch stop pattern and the lower electrode, preferably a titanium nitride layer.
摘要:
Methods of forming integrated circuit devices include forming a PMOS transistor having a SiGe channel region therein and then exposing at least a portion of the PMOS transistor to a hydrogen plasma. A tensile stress layer may be formed on the PMOS transistor. The exposing step may include exposing source and drain regions of the PMOS transistor to the hydrogen plasma.
摘要:
Methods of forming integrated circuit devices include forming a PMOS transistor having a SiGe channel region therein and then exposing at least a portion of the PMOS transistor to a hydrogen plasma. A tensile stress layer may be formed on the PMOS transistor. The exposing step may include exposing source and drain regions of the PMOS transistor to the hydrogen plasma.
摘要:
A method of fabricating a semiconductor integrated circuit device includes forming a gate pattern on a semiconductor substrate, the gate pattern having a gate insulation film and a gate electrode. A spacer is formed on sidewalls of the gate pattern. A silicide layer is formed by a silicide process on at least one portion of the semiconductor substrate exposed by the gate pattern and the spacer, the silicide layer being formed using a silicide process. A stress buffer layer is formed on a resultant structure having the silicide layer. A stress film is formed on the stress buffer layer.
摘要:
Methods of manufacturing a semiconductor device include forming an NMOS transistor on a semiconductor substrate, forming a first interlayer dielectric layer on the NMOS transistor, and dehydrogenating the first interlayer dielectric layer. Dehydrogenating the first interlayer dielectric layer may change a stress of the first interlayer dielectric layer. In particular, the first interlayer dielectric layer may have a tensile stress of 200 MPa or more after dehydrogenization. Semiconductor devices including dehydrogenated interlayer dielectric layers are also provided.
摘要:
Methods of forming integrated circuit devices according to embodiments of the present invention include forming a PMOS transistor having P-type source and drain regions, in a semiconductor substrate, and then forming a diffusion barrier layer on the source and drain regions. A silicon nitride layer is deposited on at least portions of the diffusion barrier layer that extend opposite the source and drain regions. Hydrogen is removed from the deposited silicon nitride layer by exposing the silicon nitride layer to ultraviolet (UV) radiation. This removal of hydrogen may operate to increase a tensile stress in a channel region of the field effect transistor. This UV radiation step may be followed by patterning the first and second silicon nitride layers to expose the source and drain regions and then forming silicide contact layers directly on the exposed source and drain regions.