Abstract:
In one embodiment, a substrate support assembly includes a susceptor for supporting a substrate, and a supporting transfer mechanism coupled to the susceptor, the supporting transfer mechanism having a surface for supporting a peripheral edge of the substrate, the supporting transfer mechanism being movable relative to an upper surface of the susceptor.
Abstract:
A process chamber is provided including a top, a bottom, and a sidewall coupled together to define a volume. A substrate support is disposed in the volume. The process chamber further includes one or more lampheads facing the substrate support, each lamphead comprising an arrangement of lamps disposed along a plane. The arrangement of lamps is defined by a center and a plurality of concentric ring-shaped zones. Each ring-shaped zone is defined by an inner edge and an outer edge and each ring-shaped zone includes three or more alignments of one or more lamps. Each alignment of one or more lamps has a first end extending linearly to a second end that are separated by at least 10 degrees around the center. The first end and the second end are both located within one ring-shaped zone. Each alignment located within a same ring-shaped zone is equidistant to the center.
Abstract:
Embodiments of the present disclosure provide a liner assembly including a plurality of individually separated gas passages. The liner assembly enables tenability of flow parameters, such as velocity, density, direction and spatial location, across a substrate being processed. The processing gas across the substrate being processed may be specially tailored for individual processes with a liner assembly according to embodiment of the present disclosure.
Abstract:
Methods and apparatus are provided for reducing the thermal signal noise in process chambers using a non-contact temperature sensing device to measure the temperature of a component in the process chamber. In some embodiments, a susceptor for supporting a substrate in a process chamber includes a first surface comprising a substrate support surface; and a second surface opposite the first surface, wherein a portion of the second surface comprises a feature to absorb incident radiant energy.
Abstract:
Embodiments of the present disclosure relate to a dome assembly. The dome assembly includes an upper dome including a central window, and an upper peripheral flange engaging the central window at a circumference of the central window, wherein a tangent line on an inside surface of the central window that passes through an intersection of the central window and the upper peripheral flange is at an angle of about 8° to about 16° with respect to a planar upper surface of the peripheral flange, a lower dome comprising a lower peripheral flange and a bottom connecting the lower peripheral flange with a central opening, wherein a tangent line on an outside surface of the bottom that passes through an intersection of the bottom and the lower peripheral flange is at an angle of about 8° to about 16° with respect to a planar bottom surface of the lower peripheral flange.
Abstract:
Embodiments described herein relate to an apparatus and method for lining a processing region within a chamber. In one embodiment, a modular liner assembly for a substrate processing chamber is provided. The modular liner assembly includes a first liner and a second liner, each of the first liner and second liner comprising an annular body sized to be received in a processing volume of a chamber, and at least a third liner comprising a body that extends through the first liner and the second liner, the third liner having a first end disposed in the process volume and a second end disposed outside of the chamber.
Abstract:
A method and apparatus for processing a semiconductor substrate is described. The apparatus is a process chamber having an optically transparent upper dome and lower dome. Vacuum is maintained in the process chamber during processing. The upper dome is thermally controlled by flowing a thermal control fluid along the upper dome outside the processing region. Thermal lamps are positioned proximate the lower dome, and thermal sensors are disposed among the lamps. The lamps are powered in zones, and a controller adjusts power to the lamp zones based on data received from the thermal sensors.