Abstract:
A method and apparatus for processing a semiconductor substrate is described. The apparatus is a process chamber having an optically transparent upper dome and lower dome. Vacuum is maintained in the process chamber during processing. The upper dome is thermally controlled by flowing a thermal control fluid along the upper dome outside the processing region. Thermal lamps are positioned proximate the lower dome, and thermal sensors are disposed among the lamps. The lamps are powered in zones, and a controller adjusts power to the lamp zones based on data received from the thermal sensors.
Abstract:
Semiconductor processing systems are described to measure levels of atomic oxygen using an atomic oxygen sensor positioned within a substrate processing region of a substrate processing chamber. The processing systems may include a semiconductor chamber that has a chamber body which defines a substrate processing region. The processing chamber may also include a substrate support positioned within the substrate processing region. The atomic oxygen sensor may be positioned proximate to the substrate support in the substrate processing region of the chamber. Also described are semiconductor processing methods that include detecting a concentration of atomic oxygen in the substrate processing region with an atomic oxygen sensor positioned in the semiconductor processing chamber. The atomic oxygen sensor may include at least one electrode comprising a material selectively permeable to atomic oxygen over molecular oxygen, and may further include a solid electrolyte that selectively conducts atomic oxygen ions.
Abstract:
A method and apparatus for processing a semiconductor substrate is described. The apparatus is a process chamber having an optically transparent upper dome and lower dome. Vacuum is maintained in the process chamber during processing. The upper dome is thermally controlled by flowing a thermal control fluid along the upper dome outside the processing region. Thermal lamps are positioned proximate the lower dome, and thermal sensors are disposed among the lamps. The lamps are powered in zones, and a controller adjusts power to the lamp zones based on data received from the thermal sensors.
Abstract:
A method and apparatus for plasma processing of substrates is provided. A processing chamber has a substrate support and a lid assembly facing the substrate support. The lid assembly has a plasma source that comprises a coil disposed within a conductive plate, which may comprise nested conductive rings. The coil is substantially coplanar with the conductive plate, and insulated therefrom by an insulator that fits within a channel formed in the conductive plate, or nests within the conductive rings. A field concentrator is provided around the coil, and insulated therefrom by isolators. The plasma source is supported from a conductive support plate. A gas distributor supplies gas to the chamber through a central opening of the support plate and plasma source from a conduit disposed through the conductive plate.
Abstract:
A substrate processing apparatus is provided. The substrate processing apparatus includes a vacuum chamber having a dome and a floor. A substrate support is disposed inside the vacuum chamber. A plurality of thermal lamps are arranged in a lamphead and positioned proximate the floor of the vacuum chamber. A reflector is disposed proximate the dome, where the reflector and the dome together define a thermal control space. The substrate processing apparatus further includes a plurality of power supplies coupled to the thermal lamps and a controller for adjusting the power supplies to control a temperature in the vacuum chamber.
Abstract:
A method and apparatus for plasma processing of substrates is provided. A processing chamber has a substrate support and a lid assembly facing the substrate support. The lid assembly has a plasma source that comprises a coil disposed within a conductive plate, which may comprise nested conductive rings. The coil is substantially coplanar with the conductive plate, and insulated therefrom by an insulator that fits within a channel formed in the conductive plate, or nests within the conductive rings. A field concentrator is provided around the coil, and insulated therefrom by isolators. The plasma source is supported from a conductive support plate. A gas distributor supplies gas to the chamber through a central opening of the support plate and plasma source from a conduit disposed through the conductive plate.
Abstract:
Methods and apparatus for forming substrates having magnetically patterned surfaces is provided. A magnetic layer comprising one or more materials having magnetic properties is formed on a substrate. The magnetic layer is subjected to a patterning process in which selected portions of the surface of the magnetic layer are altered such that the altered portions have different magnetic properties from the non-altered portions without changing the topography of the substrate. A protective layer and a lubricant layer are deposited over the patterned magnetic layer. The patterning is accomplished through a number of processes that expose substrates to energy of varying forms. Apparatus and methods disclosed herein enable processing of two major surfaces of a substrate simultaneously, or sequentially by flipping. In some embodiments, magnetic properties of the substrate surface may be uniformly altered by plasma exposure and then selectively restored by exposure to patterned energy.