摘要:
A method of fabricating a surface emitting semiconductor laser includes a first step of forming, on a substrate, multiple monitor-use semiconductor layers having stripes radiating from a center of the substrate, and a laser portion that includes semiconductor layers and is located on the periphery of the multiple monitor-use semiconductor layers, a second step of monitoring oxidized conditions on the multiple monitor-use semiconductor layers when a selectively oxidized region is formed in the laser portion, and a third step of controlling oxidization of the selectively oxidized region on the basis of the oxidized conditions thus monitored.
摘要:
A method of fabricating a surface emitting semiconductor laser includes a first step of forming, on a substrate, multiple monitor-use semiconductor layers having stripes radiating from a center of the substrate, and a laser portion that includes semiconductor layers and is located on the periphery of the multiple monitor-use semiconductor layers, a second step of monitoring oxidized conditions on the multiple monitor-use semiconductor layers when a selectively oxidized region is formed in the laser portion, and a third step of controlling oxidization of the selectively oxidized region on the basis of the oxidized conditions thus monitored.
摘要:
A light-emitting device includes 16 vertical-cavity surface-emitting laser diodes (VCSELs) disposed like a 4×4 grid, for example, in a sufficiently narrower range than the end surface of an optical fiber. The 16 VCSELs disposed in the light-emitting device emit optical signals in the same direction. Since the VCSELs are disposed with a concentration in the sufficiently narrower range than the end surface of the optical fiber as described above, if the optical signals emitted from the VCSELs are spread, almost all optical signals generated by the light-emitting device are incident on the end surface of the optical fiber and are transmitted through the optical fiber.
摘要:
Disclosed is a light-emitting element including a semiconductor substrate, an island structure formed on the semiconductor substrate and including at least a current confining layer and p-type and n-type semiconductor layers, a light-emitting thyristor formed in the island structure and having a pnpn structure, and a shift thyristor formed in the island structure and having a pnpn structure, wherein a groove portion having a depth such that the groove portion reaches at least the current confining layer is formed between a formation region of the shift thyristor of the island structure and a formation region of the light-emitting thyristor, and an oxidized region that is selectively oxidized from a side surface of the island structure and a side surface of the groove portion is formed in the current confining layer.
摘要:
A surface-emitting semiconductor laser includes a substrate, a first semiconductor multi-layered reflector of a first conductivity type, an active region, a second semiconductor multi-layered reflector of a second conductivity type, a columnar structure, a current-confining layer including a conductive area surrounded with an oxidized area, a first electrode defining a light-emitting window, a first dielectric film covering the light-emitting window, and a second dielectric film formed on the first dielectric film. The second dielectric film has an asymmetrical shape having a long axis and a short axis, the second dielectric film is located at a position overlapping with the conductive area, the second refractive index n2 is greater than the first refractive index n1, the thickness of the first dielectric film is an odd multiple of λ/4·n1 (λ: oscillation wavelength), and the thickness of the second dielectric film is an odd multiple of λ/4·n2.
摘要:
A DA converter includes: an analog signal output section that generates an output current and a non-output current according to a value of a digital input signal in response to a gain control signal supplied to adjust gain, and that outputs an analog signal produced by current-voltage conversion of the output current and causes the non-output current to flow to a reference potential; a gain control signal generating section that generates a gain current and a non-select current according to a value of a digital gain control signal, and that generates the gain control signal by current-voltage conversion of the gain current and supplies the gain control signal to the analog signal output section; and a correction current generating section that generates, based on the non-select current of the gain control signal generating section, a correction current that complements an amount of current fluctuation due to changes in gain settings in the gain control signal generating section, and that causes the correction current to flow to the reference potential.
摘要:
A semiconductor device includes a substrate, a semiconductor layer formed on the substrate, and an optically functional portion formed by using at least a portion of the semiconductor layer. The optically functional portion performs light emission or light reception. The semiconductor device further includes a first driving electrode that is electrically connected to a semiconductor layer on a surface of the optically functional portion, and the first driving electrode drives the optically functional portion. The semiconductor device further includes an encapsulating electrode that is formed on the semiconductor layer to surround periphery of the optically functional portion, and electrically connected to the first driving electrode.
摘要:
A semiconductor device includes a substrate, a semiconductor layer formed on the substrate, and an optically functional portion formed by using at least a portion of the semiconductor layer. The optically functional portion performs light emission or light reception. The semiconductor device further includes a first driving electrode that is electrically connected to a semiconductor layer on a surface of the optically functional portion, and the first driving electrode drives the optically functional portion. The semiconductor device further includes an encapsulating electrode that is formed on the semiconductor layer to surround periphery of the optically functional portion, and electrically connected to the first driving electrode.
摘要:
A method of fabricating a surface emitting semiconductor laser includes the following steps. A first laminate of semiconductor layers and a second laminate of semiconductor layers are formed on a substrate. The first laminate includes a first reflection mirror layer of a first conduction type, an active region, a III-V semiconductor layer containing Al, and a second reflection mirror layer of a second conduction type, the second laminate being used for monitoring and having an oxidizable region. The first and second laminates are etched so as to form mesas on the substrate in which side surface of the III-V semiconductor layer contained in the first laminate is exposed. Oxidization of the III-V semiconductor layer from the side surface is started at an oxidization rate. During oxidization, a reflectance of the second laminate for monitoring or its variation is monitored, and oxidization of the III-V semiconductor layer is terminated after a constant time from a time when the reflectance or its variation reaches a corresponding given value.
摘要:
A surface-emitting semiconductor laser includes comprising a substrate, a first mesa that is formed on the substrate and includes at least one mesa capable of emitting laser light, and a second mesa that is formed on the substrate and includes at least one mesa restraining emission of laser light.