Abstract:
Discussed generally herein are methods and devices for flexible fabrics or that otherwise include thin traces. A device can include a flexible polyimide material, and a first plurality of traces on the flexible polyimide material, wherein the first plurality of traces are patterned on the flexible polyimide material using laser spallation.
Abstract:
Some forms relate to a method of making a stretchable computing system. The method includes attaching a first set of conductive traces to a stretchable member; attaching a first electronic component to the first set of conductive traces; adding a first set of flexible conductors to the stretchable member such that the first set of flexible conductors is electrically connected to the first set of conductive traces; adding stretchable material to the stretchable member such that the first set of conductive traces is surrounded by the stretchable member; forming an opening in the stretchable member that exposes the first set of conductive traces; and attaching a second set of conductive traces to the stretchable member such that the second set of conductive traces fills the opening to form a via in the stretchable member that electrically connects the first set of conductive traces with the second set of conductive traces.
Abstract:
A wireless charging system includes a microelectronic package (110) containing a system on chip (120) (an SoC), an energy transfer unit (140), and a software protocol (127). The SoC includes a processing device (121), a memory device (122) coupled to the processing device, and a communications device (123) coupled to the processing device and the memory device. The communications device is capable of communicating wirelessly with an external electronic device (130). The energy transfer unit is capable of transferring energy to the external electronic device. The software protocol is implemented in the memory device and is capable of detecting a charging profile of the external electronic device and capable of adjusting a parameter of the energy transfer unit according to a requirement of the charging profile.
Abstract:
The present disclosure relates to the field of microelectronic die packaging, particularly multi-chip packaging, wherein on-substrate modularity is enabled by using in-street die-to-die interconnects to facilitate signal routing between microelectronic dice. These in-street die-to-die interconnects may allow for manufacturing of several products on a single microelectronic substrate, which may lead to improved microelectronic die and/or microelectronic module harvesting and increased product yields.
Abstract:
A layer or layers for use in package substrates and die spacers are described. The layer or layers include a plurality of ceramic wells lying within a plane and separated by metallic vias. Recesses within the ceramic wells are occupied by a dielectric filler material.
Abstract:
The present disclosure relates to the field of fabricating microelectronic packages, wherein components of the microelectronic packages may have magnetic attachment structures comprising a magnetic component and a metal component. The magnetic attachment structure may be exposed to a magnetic field, which, through the vibration of the magnetic component, can heat the magnetic attachment structure, and which when placed in contact with a solder material can reflow the solder material and attach microelectronic components of the microelectronic package.