Abstract:
Methods for fabricating integrated circuits are provided. One method includes decomposing a master pattern layout for a semiconductor device layer that includes a target metal line with a target interconnecting via/contact into a first sub-pattern and a second sub-pattern. The target metal line is decomposed into a first line feature pattern that is part of the first sub-pattern and a second line feature pattern that is part of the second sub-pattern such that the first and second line feature patterns have overlapping portions defining a stitch that corresponds to the target interconnecting via/contact. A first photomask is generated that corresponds to the first sub-pattern. A second photomask is generated that corresponds to the second sub-pattern.
Abstract:
Embodiments of the present invention provide improved methods of contact formation. A self aligned contact scheme with reduced lithography requirements is disclosed. This reduces the risk of shorts between source/drains and gates, while providing improved circuit density. Cavities are formed adjacent to the gates, and a fill metal is deposited in the cavities to form contact strips. A patterning mask is then used to form smaller contacts by performing a partial metal recess of the contact strips.
Abstract:
Integrated circuits having silicide contacts with reduced contact resistance and methods for fabricating integrated circuits having silicide contacts with reduced contact resistance are provided. In an embodiment, a method for fabricating an integrated circuit includes providing a semiconductor substrate having selected source/drain regions and non-selected source/drain regions. The method forms a contact resistance modulation material over the selected source/drain regions. Further, the method forms a metal layer over the selected and non-selected source/drain regions. The method includes annealing the metal layer to form silicide contacts on the selected and non-selected source/drain regions.
Abstract:
Embodiments of the present invention provide a method for self-aligned metal cuts in a back end of line structure. Sacrificial Mx+1 lines are formed above metal Mx lines. Spacers are formed on each Mx+1 sacrificial line. The gap between the spacers is used to determine the location and thickness of cuts to the Mx metal lines. This ensures that the Mx metal line cuts do not encroach on vias that interconnect the Mx and Mx+1 levels. It also allows for reduced limits in terms of via enclosure rules, which enables increased circuit density.
Abstract:
Embodiments of the present invention provide a method for cuts of sacrificial metal lines in a back end of line structure. Sacrificial Mx+1 lines are formed above metal Mx lines. A line cut lithography stack is deposited and patterned over the sacrificial Mx+1 lines and a cut cavity is formed. The cut cavity is filled with dielectric material. A selective etch process removes the sacrificial Mx+1 lines, preserving the dielectric that fills in the cut cavity. Precut metal lines are then formed by depositing metal where the sacrificial Mx+1 lines were removed. Thus embodiments of the present invention provide precut metal lines, and do not require metal cutting. By avoiding the need for metal cutting, the risks associated with metal cutting are avoided.
Abstract:
Integrated circuits and methods for producing the same are provided. A method for producing an integrated circuit includes forming a layered fin overlying a substrate, where the layered fin includes an SiGe layer and an Si layer. The SiGe layer and the Si layer alternate along a height of the layered fin. A dummy gate is formed overlying the substrate and the layered fin, and a source and a drain area formed in contact with the layered fin. The dummy gate is removed to expose the SiGe layer and the Si layer, and the Si layer is removed to produce an SiGe nanowire. A high K dielectric layer that encases the SiGe nanowire between the source and the drain is formed, and a replacement metal gate is formed so that the replacement metal gate encases the high K dielectric layer and the SiGe nanowire between the source and drain.
Abstract:
Embodiments of the present invention provide an improved structure and method of contact formation. A cap nitride is removed from a gate in a region that is distanced from a fin. This facilitates reduced process steps, allowing the gate and the source/drain regions to be opened in the same process step. Extreme Ultraviolet Lithography (EUVL) may be used to pattern the resist to form the contacts.
Abstract:
Devices and methods for forming semiconductor devices with metal-titanium oxide contacts are provided. One intermediate semiconductor device includes, for instance: a substrate, at least one field-effect transistor disposed on the substrate, a first contact region positioned over at least a first portion of the at least one field-effect transistor between a spacer and an interlayer dielectric, and a second contact region positioned over at least a second portion of the at least one field-effect transistor between a spacer and an interlayer dielectric. One method includes, for instance: obtaining an intermediate semiconductor device and forming at least one contact on the intermediate semiconductor device.
Abstract:
Provided are approaches for forming merged gate and source/drain (S/D) contacts in a semiconductor device. Specifically, one approach provides a dielectric layer over a set of gate structures formed over a substrate; a set of source/drain (S/D) openings patterned in the dielectric layer between the gate structures; a fill material formed over the gate structures, including within the S/D openings; and a set of gate openings patterned over the gate structures, wherein a portion of the dielectric layer directly adjacent the fill material formed within one of the S/D openings is removed. The fill material is then removed, selective to the dielectric layer, and a metal material is deposited over the semiconductor device to form a set of gate contacts within the gate openings, and a set of S/D contacts within the S/D openings, wherein one of the gate contacts and one of the S/D contacts are merged.
Abstract:
Provided are approaches for forming gate and source/drain (S/D) contacts. Specifically, a gate contact opening is formed over at least one of a set of gate structures, a set of S/D contact openings is formed over fins of the semiconductor device, and a metal material is deposited over the semiconductor device to form a gate contact within the gate contact opening and a set of S/D contacts within the set of S/D contact openings. In one approach, nitride remains between the gate contact and at least one of the S/D contacts. In another approach, the device includes merged gate and S/D contacts. This approach provides selective etching to partition areas where oxide will be further removed selectively to nitride to create cavities to metallize and create contact to the S/D, while isolation areas between contact areas are enclosed in nitride and do not get removed during the oxide etch.