Abstract:
Integrated circuits and methods for fabricating integrated circuits are provided herein. In an embodiment of a method for fabricating integrated circuits, a P-type gate electrode structure and an N-type gate electrode structure are formed overlying a semiconductor substrate. The gate electrode structures each include a gate electrode that overlies a gate dielectric layer and a nitride cap that overlies the gate electrode. Conductivity determining ions are implanted into the semiconductor substrate using the P-type gate electrode structure and the N-type gate electrode structure as masks to form a source region and a drain region for the P-type gate electrode structure and the N-type gate electrode structure. The nitride cap remains overlying the N-type gate electrode structure during implantation of the conductivity determining ions into the semiconductor substrate to form the source region and the drain region for the N-type gate electrode structure.
Abstract:
A known problem when manufacturing transistors is the stress undesirably introduced by the spacers into the transistor channel region. In order to solve this problem, the present invention proposes an ion implantation aimed at relaxing the stress of the spacer materials. The relax implantation is performed after the spacer has been completely formed. The relax implantation may be performed after a silicidation process or after an implantation step in the source and drain regions followed by an activation annealing and before performing the silicidation process.
Abstract:
The present invention relates to a semiconductor structure comprising at least a first and a second three-dimensional transistor, wherein the first transistor and the second transistor are electrically connected in parallel to each other, and wherein each transistor comprises a source and a drain, wherein the source and/or drain of the first transistor is at least partially separated from, respectively, the source and/or drain of the second transistor. The invention further relates to a process for realizing such a semiconductor structure.
Abstract:
When forming sophisticated P-channel transistors, a semiconductor alloy layer is formed on the surface of the semiconductor layer including the transistor active region. When a metal silicide layer is formed contiguous to this semiconductor alloy layer, an agglomeration of the metal silicide layer into isolated clusters is observed. In order to solve this problem, the present invention proposes a method and a semiconductor device wherein the portion of the semiconductor alloy layer lying on the source and drain regions of the transistor is removed before formation of the metal silicide layer is performed. In this manner, the metal silicide layer is formed so as to be contiguous to the semiconductor layer, and not to the semiconductor alloy layer.
Abstract:
A semiconductor device includes a plurality of spaced apart fins, a dielectric material layer positioned between each of the plurality of spaced apart fins, and a common gate structure positioned above the dielectric material layer and extending across the fins. A continuous merged semiconductor material region is positioned on each of the fins and above the dielectric material layer, is laterally spaced apart from the common gate structure, extends between and physically contacts the fins, has a first sidewall surface that faces toward the common gate structure, and has a second sidewall surface that is opposite of the first sidewall surface and faces away from the common gate structure. A stress-inducing material is positioned in a space defined by at least the first sidewall surface, opposing sidewall surfaces of an adjacent pair of fins, and an upper surface of the dielectric material layer.
Abstract:
The present disclosure provides storage elements, such as storage transistors, wherein at least one storage mechanism is provided on the basis of a ferroelectric material formed in the buried insulating layer of an SOI transistor architecture. In further illustrative embodiments, one further storage mechanism is implemented in the gate electrode structure, thereby providing increased overall information density. In some illustrative embodiments, the storage mechanism in the gate electrode structure is provided in the form of a ferroelectric material.
Abstract:
In illustrative embodiments disclosed herein, a logic element may be provided on the basis of a non-volatile storage mechanism, such as ferroelectric transistor elements, wherein the functional behavior may be adjusted or programmed on the basis of a shift of threshold voltages. To this end, a P-type transistor element and an N-type transistor element may be connected in parallel, while a ferroelectric material may be used so as to establish a first polarization state resulting in a first functional behavior and a second polarization state resulting in a second different functional behavior. For example, the logic element may enable a switching between P-type transistor behavior and N-type transistor behavior depending on the polarization state.
Abstract:
Methods of forming a device structure for a field-effect transistor and device structures for a field-effect transistor. A first gate dielectric layer is formed on a semiconductor layer in a first area. A hardmask layer is formed on the first gate dielectric layer in the first area of the semiconductor layer. A gate stack layer is formed on the semiconductor layer in a second area and on the hardmask layer in the first area of the semiconductor layer. The hardmask layer separates the gate stack layer from the first gate dielectric layer on the first area of the semiconductor layer.
Abstract:
The present disclosure provides a semiconductor device structure including a non-volatile memory (NVM) device structure in and above a first region of a semiconductor substrate and a logic device formed in and above a second region of the semiconductor substrate different from the first region. The NVM device structure includes a floating-gate, a first select gate and at least one control gate. The logic device includes a logic gate disposed on the second region and source/drain regions provided in the second region adjacent to the logic gate. The control gate extends over the floating-gate and the first select gate is laterally separated from the floating-gate by an insulating material layer portion. Upon forming the semiconductor device structure, the floating gate is formed before forming the control gate and the logic device.
Abstract:
A method of manufacturing a semiconductor device is provided which includes providing a semiconductor layer having a first area and a second area separated from the first area by an isolation structure, forming a protection layer on the isolation structure, forming at least partly a memory device in and on the first area, removing the protection layer, and forming a field effect transistor (FET) in and over the second area after the removal of the protection layer.