Abstract:
A device includes a semiconductor substrate. A gate stack on the semiconductor substrate includes a gate dielectric layer and a gate conductor layer. Low-k spacers are adjacent to the gate dielectric layer. Raised source/drain (RSD) regions are adjacent to the low-k spacers. The low-k spacers are embedded in an ILD on the RSD regions.
Abstract:
A method of forming a semiconductor structure includes forming a first isolation region between fins of a first group of fins and between fins of a second group of fins. The first a second group of fins are formed in a bulk semiconductor substrate. A second isolation region is formed between the first group of fins and the second group of fins, the second isolation region extends through a portion of the first isolation region such that the first and second isolation regions are in direct contact and a height above the bulk semiconductor substrate of the second isolation region is greater than a height above the bulk semiconductor substrate of the first isolation region.
Abstract:
An e-fuse is provided in one area of a semiconductor substrate. The E-fuse includes a vertical stack of from, bottom to top, base metal semiconductor alloy portion, a first metal semiconductor alloy portion, a second metal semiconductor portion, a third metal semiconductor alloy portion and a fourth metal semiconductor alloy portion, wherein the first metal semiconductor alloy portion and the third metal semiconductor portion have outer edges that are vertically offset and do not extend beyond vertical edges of the second metal semiconductor alloy portion and the fourth metal semiconductor alloy portion.
Abstract:
A finned structure is fabricated using a bulk silicon substrate having a carbon doped epitaxial silicon layer. A pFET region of the structure includes silicon germanium fins. Such fins are formed by annealing the structure to mix a germanium containing layer with an adjoining crystalline silicon layer. The structure further includes an nFET region including silicon fins formed from the crystalline silicon layer. The germanium containing layer in the nFET region is removed to create a space beneath the crystalline silicon layer in the nFET region. An insulating material is provided within the space. The pFET and nFET regions are electrically isolated by a shallow trench isolation region.
Abstract:
A method for forming a U-shaped semiconductor device includes growing a U-shaped semiconductor material along sidewalls and bottoms of trenches, which are formed in a crystalline layer. The U-shaped semiconductor material is anchored, and the crystalline layer is removed. Backfilling is formed underneath the U-shaped semiconductor material with a dielectric material for support. A semiconductor device is formed with the U-shaped semiconductor material.
Abstract:
A method for semiconductor fabrication includes providing channel regions on a substrate including at least one Silicon Germanium (SiGe) channel region, the substrate including a plurality of regions including a first region and a second region. Gate structures are formed for a first n-type field effect transistor (NFET) and a first p-type field effect transistor (PFET) in the first region and a second NFET and a second PFET in the second region, the gate structure for the first PFET being formed on the SiGe channel region. The gate structure for the first NFET includes a gate material having a first work function and the gate structures for the first PFET, second NFET and second PFET include a gate material having a second work function such that multi-threshold voltage devices are provided.
Abstract:
A method for forming an electrical device that includes forming a high-k gate dielectric layer over a semiconductor substrate that is patterned to separate a first portion of the high-k gate dielectric layer that is present on a first conductivity device region from a second portion of the high-k gate dielectric layer that is present on a second conductivity device region. A connecting gate conductor is formed on the first portion and the second portion of the high-k gate dielectric layer. The connecting gate conductor extends from the first conductivity device region over the isolation region to the second conductivity device region. One of the first conductivity device region and the second conductivity device region may then be exposed to an oxygen containing atmosphere. Exposure with the oxygen containing atmosphere modifies a threshold voltage of the semiconductor device that is exposed.
Abstract:
A method of forming a semiconductor structure includes forming a first isolation region between fins of a first group of fins and between fins of a second group of fins. The first a second group of fins are formed in a bulk semiconductor substrate. A second isolation region is formed between the first group of fins and the second group of fins, the second isolation region extends through a portion of the first isolation region such that the first and second isolation regions are in direct contact and a height above the bulk semiconductor substrate of the second isolation region is greater than a height above the bulk semiconductor substrate of the first isolation region.