Abstract:
A FinFET having spacers with a substantially uniform profile along the length of a gate stack which covers a portion of a fin of semiconductor material formed on a substrate is provided by depositing spacer material conformally on both the fins and gate stack and performing an angled ion impurity implant approximately parallel to the gate stack to selectively cause damage to only spacer material deposited on the fin. Due to the damage caused by the angled implant, the spacer material on the fins can be etched with high selectivity to the spacer material on the gate stack.
Abstract:
A structure to improve ETSOI MOSFET devices includes a wafer having regions with at least a first semiconductor layer overlying an oxide layer overlying a second semiconductor layer. The regions are separated by a STI which extends at least partially into the second semiconductor layer and is partially filled with a dielectric. A gate structure is formed over the first semiconductor layer and during the wet cleans involved, the STI divot erodes until it is at a level below the oxide layer. Another dielectric layer is deposited over the device and a hole is etched to reach source and drain regions. The hole is not fully landed, extending at least partially into the STI, and an insulating material is deposited in the hole.
Abstract:
A method for fabricating a semiconductor device comprises forming a nanowire on an insulator layer at a surface of a substrate; forming a dummy gate over a portion of the nanowire and a portion of the insulator layer; forming recesses in the insulator layer on opposing sides of the dummy gate; forming spacers on opposing sides of the dummy gate; forming source regions and drain regions in the recesses in the insulator layer on opposing sides of the dummy gate; depositing an interlayer dielectric on the source regions and the drain regions; removing the dummy gate to form a trench; removing the insulator layer under the nanowire such that a width of the trench underneath the nanowire is equal to or less than a distance between the spacers; and forming a replacement gate in the trench.
Abstract:
Embodiments herein provide device isolation in a complimentary metal-oxide fin field effect transistor. Specifically, a semiconductor device is formed with a retrograde doped layer over a substrate to minimize a source to drain punch-through leakage. A set of high mobility channel fins is formed over the retrograde doped layer, each of the set of high mobility channel fins comprising a high mobility channel material (e.g., silicon or silicon-germanium). The retrograde doped layer may be formed using an in situ doping process or a counter dopant retrograde implant. The device may further include a carbon liner positioned between the retrograde doped layer and the set of high mobility channel fins to prevent carrier spill-out to the high mobility channel fins.
Abstract:
Embodiments herein provide approaches for device isolation in a complimentary metal-oxide fin field effect transistor. Specifically, a semiconductor device is formed with a retrograde doped layer over a substrate to minimize a source to drain punch-through leakage. A set of replacement fins is formed over the retrograde doped layer, each of the set of replacement fins comprising a high mobility channel material (e.g., silicon, or silicon-germanium). The retrograde doped layer may be formed using an in situ doping process or a counter dopant retrograde implant. The device may further include a carbon liner positioned between the retrograde doped layer and the set of replacement fins to prevent carrier spill-out to the replacement fins.
Abstract:
Aspects of the present invention relate to an approach for forming an integrated circuit having a set of fins on a silicon substrate, with the set of fins being formed according to a predetermined pattern. In situ doping of the fins with an N-type dopant prior to deposition of an epitaxial layer minimizes punch through leakage whilst an epitaxial depositional process applies a cladding layer on the doped fins, the deposition resulting in a multigate device having improved device isolation.
Abstract:
One aspect of the disclosure relates to a method of forming a semiconductor structure. The method may include: forming a set of openings within a substrate; forming an insulator layer within each opening in the set of openings; recessing the substrate between adjacent openings containing the insulator layer in the set of openings to form a set of insulator pillars on the substrate; forming sigma cavities within the recessed substrate between adjacent insulator pillars in the set of insulator pillars; and filling the sigma cavities with a semiconductor material over the recessed substrate between adjacent insulator pillars.
Abstract:
One aspect of the disclosure relates to a method of forming a semiconductor structure. The method may include: forming a set of openings within a substrate; forming an insulator layer within each opening in the set of openings; recessing the substrate between adjacent openings containing the insulator layer in the set of openings to form a set of insulator pillars on the substrate; forming sigma cavities within the recessed substrate between adjacent insulator pillars in the set of insulator pillars; and filling the sigma cavities with a semiconductor material over the recessed substrate between adjacent insulator pillars.
Abstract:
Shallow trench isolation structures are provided for use with UTBB (ultra-thin body and buried oxide) semiconductor substrates, which prevent defect mechanisms from occurring, such as the formation of electrical shorts between exposed portions of silicon layers on the sidewalls of shallow trench of a UTBB substrate, in instances when trench fill material of the shallow trench is subsequently etched away and recessed below an upper surface of the UTBB substrate.
Abstract:
Methods for forming semiconductor devices. Methods for forming fin structures include forming first sidewalls around a first set of mandrels. The first set of mandrels is removed and second sidewalls are formed around the first sidewalls and a second set of mandrels. The first sidewalls and the second set of mandrels are removed and an underlying layer around the second sidewalls is etched.