Abstract:
Various embodiments include computer-implemented methods, computer program products and systems for analyzing at least one feature in a layout representing an integrated circuit (IC) for an overlay effect. In some cases, approaches include a computer-implemented method including: modeling a topography of the IC by running at least one of a chemical mechanical polishing (CMP) model, a deposition model or an etch model on a data file representing the IC after formation of an uppermost layer; modeling the at least one feature in the IC for an overlay effect using the topography model of the IC; and modifying the data file representing the IC after formation of the uppermost layer in response to detecting the overlay effect in the at least one feature, the overlay effect occurring in a layer underlying the uppermost layer.
Abstract:
Via-level design shapes are mapped into stitch regions of line-level design shapes design in an overlying conductive line level. A via-catching design shape is provided in an underlying conductive line level for each stitch region that does not correspond to a via-level design shape. The shapes of the stitch regions and the via-catch design shapes can be adjusted to comply with design rule constraints. Further, stitches can be optionally moved into a neighboring line-level design shape to resolve design rule conflicts. The modified design layout can eliminate via-level design shapes once all via-level design shapes are replaced with a corresponding stitch region, thereby eliminating the need to provide a via level lithographic mask. A metal interconnect structure embodying the modified design layout can be formed by employing a set of hard mask layers and without employing a lithographic mask for a via level.
Abstract:
A design layout is provided such that an underlying conductive line structure underlies a stitch region in an overlying conductive line structure. A stitch-induced via structure can be formed between the underlying conductive line structure and the overlying conductive line structure when a stitch region in a hard mask layer is etched multiple times. At least one of the underlying conductive line structure and the overlying conductive line structure is electrically isolated from other conductive line structures in a same design level so as to avoid unintentional electrical shorts.
Abstract:
A metal interconnect structure, a system and method of manufacture, wherein a design layout includes results in forming at least two trenches of different trench depths. The method uses a slightly modified BEOL processing stack to prevent metal interconnect structures from encroaching upon an underlying hard mask dielectric or metallic hard mask layer. Thus two trench depths are obtained by tuning parameters of the system and allowing areas exposed by two masks to have deeper trenches. Here, the BEOL Stack processing is modified to enable two trench depths by using a hardmask that defines the lowest etch depth. The design may be optimized by software which optimizes a design for electromigration (or setup timing violations) by utilizing secondary trench depths, checking space opportunity around wires, pushing wires out to generate space and converting a wire to deep trench wire.
Abstract:
A fluxonium qubit includes a superinductor. The superinductor includes a substrate, and a first vertical stack extending in a vertical direction from a surface of the substrate. The first vertical stack includes a first Josephson junction and a second Josephson junction connected in series along the vertical direction. The superinductor includes a second vertical stack extending in a vertical direction from a surface of the substrate. The second vertical stack includes a third Josephson junction. The superinductor includes a superconducting connector connecting the first and second vertical stacks in series such that the first, second, and third Josephson junctions are connected in series. The fluxonium qubit further includes a shunted Josephson junction connected to the superinductor with superconducting wires such that the first, second, and third Josephson junctions of the superinductor that are in series are connected in parallel with the shunted Josephson junction.
Abstract:
Multiple interconnect structures with reduced TDDB susceptibility and reduced stray capacitance are disclosed. The structures have one or more pairs of layers (an upper and a lower layer) that form layered pairs in the structure. In each of the upper and lower layers, dielectric material separates an upper pair of interconnects from a lower pair of interconnects or from other conductive material. Pairs of vias pass through the dielectric and mechanically and electrically connect the respective sides of the upper and lower sides of the interconnect. A gap of air separates all or part of the pair of vias and the electrical paths the vias are within. In alternative embodiments, the airgap may extend to the bottom of the vias, below the tops of the lower pair of interconnects, or deeper into the lower layer. Alternative process methods are disclosed for making the different embodiments of the structures.
Abstract:
An approach for shifting a cut associated with a lineend of an interconnect in a manufacturing system. The approach selects one or more polygons associated with the lineend and determines whether a first cut is spanning the one or more polygons. The approach responds to the first cut does span, determines a presence of a first via on a first interconnect and determines a first distance of the first via to the first cut. The approach determines whether the first distance is greater than a first threshold and responds to the first distance is greater and determines whether the first distance is greater and determines a second distance of the first cut to a second cut. The approach determines whether the second distance is greater than a second threshold and responds to the second distance is greater and generates a shift associated with the first cut and outputs the shift.
Abstract:
A vertical q-capacitor includes a trench in a substrate through a layer of superconducting material. A superconductor is deposited in the trench forming a first film on a first surface, a second film on a second surface, and a third film of the superconductor on a third surface of the trench. The first and second surfaces are substantially parallel, and the third surface in the trench separates the first and second surfaces. A dielectric is exposed below the third film by etching. A first coupling is formed between the first film and a first contact, and a second coupling is formed between the second film and a second contact in a superconducting quantum logic circuit. The first and second couplings cause the first and second films to operate as the vertical q-capacitor that maintains integrity of data in the superconducting quantum logic circuit within a threshold level.
Abstract:
A semiconductor product includes a substrate having a self-assembly (SA) pattern. An initial SA pattern is created using a block copolymer (BCP) which has been annealed on the substrate. The initial SA pattern and/or an enlarged SA pattern derived from the initial SA pattern is incorporated into the semiconductor product. The SA pattern is an information carrying security mark having a set of features with corresponding locations within the information carrying security mark which uniquely identify the semiconductor product. In other embodiments of the invention a method and system for creating the semiconductor product are described.
Abstract:
A semiconductor structure includes fins that have a 2D material, such as Graphene, upon at least the fin sidewalls. The thickness of the 2D material sidewall may be tuned to achieve desired finFET band gap control. Neighboring fins of the semiconductor structure form fin wells. The semiconductor structure may include a fin cap upon each fin and the 2D material is formed upon the sidewalls of the fin and the bottom surface of the fin wells. The semiconductor structure may include a well-plug at the bottom of the fin wells and the 2D material is formed upon the sidewalls and upper surface of the fins. The semiconductor structure may include both fin caps and well-plugs such that the 2D material is formed only upon the sidewalls of the fins.