Abstract:
A method of cruise control whereby a following vehicle can be caused to travel at a target speed, subject to maintaining a pre-determined distance from a leading vehicle in substantially straight travel, the method comprising: determining by means of measuring means a separation distance of the leading vehicle and following vehicle and maintaining the pre-determined separation distance from the leading vehicle; determining by means of deviation detection means a deviation of the leading vehicle from a substantially straight path and an instant location of the deviation; and preventing automatic acceleration of the following vehicle until reaching said instant location in dependence on the detection of a deviation.
Abstract:
A method and system of providing steering in cruise control, in low friction conditions, at low speed and in low range. Speed of individual vehicle wheels is repeatedly and automatically adjusted to ensure that the actual rate of turn of the vehicle approaches the theoretical rate of turn as demanded by the vehicle driver.
Abstract:
Embodiments of the present invention provide a control system for a motor vehicle, the system being operable in an automatic mode selection condition in which the system is configured to select automatically an appropriate system operating mode and to assume operation in said system operating mode, wherein when operating in the automatic mode selection condition the system is configured to prevent selection of a prescribed one or more operating modes if it is determined that the vehicle is towing a load.
Abstract:
Embodiments of the invention provide a speed control system for a vehicle, comprising: means for automatically causing a vehicle to operate in accordance with a target speed value, means for receiving information relating to movement of at least a portion of a vehicle body or at feast a portion of a body of an occupant relative to a vehicle, and means for adjusting automatically the value of the target speed value in dependence on said information.
Abstract:
A vehicle speed control system for a vehicle having a plurality of wheels, the vehicle speed control system comprising: means for receiving a user input of a target speed at which the vehicle is intended to travel; and means for commanding application of torque to one or more wheels of the vehicle, wherein the system is configured such that when it is required to accelerate the vehicle to achieve the target speed and the system detects a wheel slip event, the system is operable temporarily to suspend further acceleration of the vehicle.
Abstract:
Embodiments of the present invention provide a vehicle control system comprising a plurality of speed control systems each operable to cause the vehicle to operate in accordance with a respective target speed, the system being operable wherein one at said plurality of speed control systems may be selected to control vehicle speed at a given moment in time, wherein when responsibility for speed control is transferred from a first one of the plurality of speed control systems to a second one of the speed control systems, the second one of the speed control systems is operable to set a value of target speed thereof to a value corresponding to that of the target speed of the first.
Abstract:
A method for controlling the speed of vehicle is provided. The method comprises providing a memory device configured to store a plurality of predefined set-speeds therein. The method further comprises selecting a desired set-speed from the plurality of predefined set-speeds stored in the memory device. The method may further comprise determining whether the selected set-speed is appropriate based on one or more conditions. The method may still further comprise causing the vehicle to operate in accordance with the selected set-speed when it is determined that the set-speed is appropriate. A system comprising a memory device configured to store a plurality of predefined set-speeds, and electronic control unit configured to select a desired one of the predefined set-speeds stored in the memory is also provided.
Abstract:
Embodiments of the present invention provide a control system for a vehicle, the vehicle (800) being operable in an at least partly autonomous mode and a manual mode, the control system comprising input means (291, 292) for receiving a gaze signal (211) indicative of a direction of a gaze of an occupant of the vehicle (800), and a contact signal (212) indicative of physical contact between the occupant and a control of the vehicle, control means (250, 260, 270, 280, 290) configured to determine an estimate of the occupant's attention to a driving task in the at least partly autonomous mode in dependence on the gaze signal (211) and to determine when the occupant is at least partly obscured relative to the at least one imaging means (150, 220), wherein the control means (250, 260, 270, 280, 290) is configured to determine the estimate of the occupant's attention to the driving task in dependence on the contact signal when it is determined that the occupant is at least partly obscured.
Abstract:
Embodiments of the present invention provide a control system for a vehicle, the vehicle (800) being operable in an at least partly autonomous mode and a manual mode, the control system comprising input means (291, 292) for receiving a gaze signal (211) indicative of a direction of a gaze of an occupant of the vehicle (800), and a contact signal (212) indicative of physical contact between the occupant and a control of the vehicle, control means (250, 260, 270, 280, 290) configured to determine an estimate of the occupant's attention to a driving task in the at least partly autonomous mode in dependence on the gaze signal (211) and to determine when the occupant is at least partly obscured relative to the at least one imaging means (150, 220), wherein the control means (250, 260, 270, 280, 290) is configured to determine the estimate of the occupant's attention to the driving task in dependence on the contact signal when it is determined that the occupant is at least partly obscured.
Abstract:
A controller can include an electronic processor unit configured to control the driving direction of a vehicle within a lane based on a first trajectory. The controller can be operable to receive a user input for directing the vehicle along a second trajectory that is different from the first trajectory, determine third trajectory data by at least comparing data associated with the first trajectory to data associated with the second trajectory, and output a control signal for controlling, using the electronic processor unit, the driving direction of the vehicle. The control signal can be based at least on the third trajectory data.