摘要:
A semiconductor package is disclosed. The package includes a leadframe having drain, source and gate leads, and a semiconductor die coupled to the leadframe, the semiconductor die having a plurality of metallized source contacts. A bridged source plate interconnection has a bridge portion, valley portions disposed on either side of the bridge portion, plane portions disposed on either side of the valley portions and the bridge portion, and a connection portion depending from one of the plane portions, the bridged source plate interconnection connecting the source lead with the plurality of metallized source contacts. The bridge portion is disposed in a plane above the plane of the valley portions while the plane portions are disposed in a plane intermediate the plane of the bridge portion and the plane of the valley portions.
摘要:
An exemplary method for fabricating a carbon nanotube-based field emission device is provided. A substrate is provided. A catalyst layer is formed on the substrate. A carbon nanotube array is grown from the catalyst layer. The carbon nanotube array includes a root portion and an opposite top portion respectively being in contact with and away from the catalyst layer. A cathode base with an adhesive layer formed thereon is provided. The top portion of the carbon nanotube array is immersed into the adhesive layer. The adhesive layer is solidified to embed the immersed top portion into the solidified adhesive layer. The root portion of the carbon nanotube array is exposed.
摘要:
A dual flat non-leaded semiconductor package is disclosed. A method of making a dual flat non-leaded semiconductor package includes forming a leadframe having a die bonding area with an integral drain lead, a gate lead bonding area and a source lead bonding area, the gate lead bonding area and a source lead bonding area being of increased area; bonding a die to the die bonding area; coupling a die source bonding area to the source lead bonding area; coupling a die gate bonding area to the gate lead bonding area; and partially encapsulating the die, the drain lead, the gate lead and the source lead to form the dual flat non-leaded semiconductor package.
摘要:
This disclosure is related to a heater. The heater includes a hollow supporter, at least one linear carbon nanotube composite structure and at least two electrodes connected to the at least one carbon nanotube composite structure. The at least one linear carbon nanotube composite structure is disposed on a surface of the hollow supporter. The at least one linear carbon nanotube composite structure includes a matrix and a linear carbon nanotube structure. The linear carbon nanotube structure includes a plurality of carbon nanotubes joined by van der Waals attractive force therebetween.
摘要:
A carbon nanotube array includes a plurality of carbon nanotubes. Each of the carbon nanotubes has a plurality of line marks formed on each of the carbon nanotubes. The line marks transversely extend across the carbon nanotubes. The line marks of each of the carbon nanotubes are spaced apart from each other.
摘要:
A linear heater includes a linear supporter, a heating element and at least two electrodes. The heating element is located on the linear supporter and includes a carbon nanotube composite structure. The carbon nanotube composite structure includes a matrix and at least one pressed carbon nanotube film. The pressed carbon nanotube film includes a plurality of carbon nanotubes. The angle between the carbon nanotubes and the surface of the heating element ranges from about 0 degrees to about 15 degrees. The at least two electrodes are electrically connected to the heating element.
摘要:
A linear heater includes a heating element and at least two electrodes. The heating element includes at least one linear carbon nanotube composite structure. The at least one linear carbon nanotube composite structure includes a matrix and a linear carbon nanotube structure. The at least two electrodes are electrically connected to the heating element.
摘要:
A semiconductor device has a first coil structure formed over the substrate. A second coil structure is formed over the substrate adjacent to the first coil structure. A third coil structure is formed over the substrate adjacent to the second coil structure. The first and second coil structures are coupled by mutual inductance, and the second and third coil structures are coupled by mutual inductance. The first, second, and third coil structures each have a height greater than a skin current depth of the coil structure defined as a depth which current reduces to 1/(complex permittivity) of a surface current value. In the case of copper, the coil structures have a height greater than 5 micrometers.The first, second, and third coil structures are arranged in rounded or polygonal pattern horizontally across the substrate with a substantially flat vertical profile.
摘要:
A top-side cooled compact semiconductor package with integrated bypass capacitor is disclosed. The top-side cooled compact semiconductor package includes a circuit substrate with terminal leads, numerous semiconductor dies bonded atop the circuit substrate, numerous elevation-adaptive interconnection plates for bonding and interconnecting top contact areas of the semiconductor dies with the circuit substrate, a first member of the elevation-adaptive interconnection plates has a first flat-top area and a second member of the elevation-adaptive interconnection plates has a second flat-top area in level with the first flat-top area, a bypass capacitor, having two capacitor terminals located at its ends, stacked atop the two interconnection plate members while being bonded thereto via the first flat-top area and the second flat-top area for a reduced interconnection parasitic impedance.
摘要:
This disclosure related to a heater. The heater includes a heating element and at least two electrodes connected to the heating element. The heating element includes a carbon nanotube composite structure. The carbon nanotube composite structure includes a matrix and at least one carbon nanotube structure. The at least one carbon nanotube structure includes a plurality of carbon nanotubes joined by van der Waals attractive force therebetween to obtain a free-standing carbon nanotube structure.