Abstract:
An electronic device such as an integrated circuit is encapsulated with a silicone resin formulation comprising a polysiloxane having a cryptate ether as part of the backbone of the polymer chain for preventing migration of cations, e.g., sodium and potassium.
Abstract:
Methods of applying Lotus Effect materials as a (superhydrophobicity) protective coating for external electrical insulation system applications, as well as the method of fabricating/preparing Lotus Effect coatings are discussed. Selected inorganic or polymeric materials are applied on the insulating material surface, and stable superhydrophobic coatings can be fabricated. Various UV stabilizers and UV absorbers can be incorporated into the coating system to enhance the coating's UV stability. Other aspects, features, and embodiments are also discussed and claimed.
Abstract:
The present invention is a method of applying Lotus Effect materials as a (superhydrophobicity) protective coating for external electrical insulation system applications, as well as the method of fabricating/preparing Lotus Effect coatings. Selected inorganic or polymeric materials are applied on the insulating material surface, and stable superhydrophobic coatings can be fabricated. Various UV stabilizers and UV absorbers can be incorporated into the coating system to enhance the coating's UV stability.
Abstract:
Polymer composites and methods of making the polymer composites are presented. A representative polymer composite includes a polymer resin and a conductive material, wherein the polymer composite is characterized by a dielectric constant greater the 200. A representative method of making the polymer composite can be broadly summarized by the following steps: providing a polymer resin and a conductive material; mixing the polymer resin and the conductive material; and forming the polymer composite, wherein the polymer composite is characterized by a dielectric constant greater than 200.
Abstract:
The present invention provides a novel process and its required fluxable materials for building low-cost flip-chip interconnect structures. The novel process involves two fluxable materials, fluxable wafer-level compressive-flow underfill material (WLCFU) and fluxable tacky film, and applies these two materials on a wafer level. The two materials can provide sufficient fluxing capability during solder reflow and significant improvement of the fatigue life of the formed solder interconnects after fully cured.
Abstract:
The specification describes a cleaning process for electronic devices and assemblies such as printed wiring boards. In the cleaning process deterioration of a terpene based cleaning solution, as evidenced by yellowing, is prevented using a copper chelating additive.
Abstract:
An electronic device (12, 13) is substantially enclosed by a fluid encapsulant (17). The fluid encapsulant consists essentially of a silicone resin and a catalyst selected from the group consisting of platinum and tin. The silicone resin is selected from the group consisting of polydimethlysiloxane, polymethylphenylsiloxane, polydimethyldiphenylsiloxane, and mixtures thereof. Such silicone resins comprise molecules terminating in vinyl components and hydride components. The molar ratio of vinyl components to hydride components is maintained within the range of five to twenty. As will be explained more fully later, this ratio of vinyl components to hydride components assures that the resin will remain substantially a liquid even after cure, due to limited cross-linking or polymerization during the cure. The electronic device is contained within a container (16) having a sealed cover (18) for containing the liquid encapsulant during the operation of the electronic device.
Abstract:
A module, such as a terminal block (10), configured of a body (12) having an open end (20) and at least one window (24) spaced from the open end, is fixtured and sealed by way of a channel (28) comprised of a pair of parallel, spaced-apart, generally elastic walls (30,32) jointed by a bottom member (34). The walls (30,32) and the bottom member (34) run longitudinally a distance at least as long as the width of the terminal block (10) to allow the block to be received between, and to be held by, the walls. At least one protrusion extends out from a separate one of the walls (30,32) and the base member (34) for receipt in the window (24) in the terminal block to seal the same.
Abstract:
An electronic device encapsulant comprises polydimethyldiphenylmethylphenylsiloxane in which the mole ratio of the sum of the methyl-phenyl and diphenyl groups to the dimethyl groups is in the range of ten to forty percent. The normal bi-functional hydride terminations are replaced with tri-functional or tetra-functional hydride terminations.
Abstract:
The addition of a low viscosity (2 to 100 centipoise) polysiloxane such asolydimethylsiloxane to a two-part heat curable polysiloxane system substantially eliminates the formation of bubbles when such system is employed as a potting compound for encapsulating devices such as electronic devices.