Abstract:
An object is to improve reliability of a semiconductor device. A semiconductor device including a driver circuit portion and a display portion (also referred to as a pixel portion) over the same substrate is provided. The driver circuit portion and the display portion include thin film transistors in which a semiconductor layer includes an oxide semiconductor; a first wiring; and a second wiring. The thin film transistors each include a source electrode layer and a drain electrode layer. In the thin film transistor in the driver circuit portion, the semiconductor layer is sandwiched between a gate electrode layer and a conductive layer. The first wiring and the second wiring are electrically connected to each other in an opening provided in a gate insulating film through an oxide conductive layer.
Abstract:
To inhibit a metal element contained in a glass substrate from being diffused into a gate insulating film or an oxide semiconductor film. A semiconductor device includes a glass substrate, a base insulating film formed using metal oxide over the glass substrate, a gate electrode formed over the base insulating film, a gate insulating film formed over the gate electrode, an oxide semiconductor film which is formed over the gate insulating film and overlapping with the gate electrode, and a source electrode and a drain electrode which are electrically connected to the oxide semiconductor film. In a region of the base insulating film that is present in a range of 3 nm or less from a surface of the base insulating film, the concentration of a metal element contained in the glass substrate is less than or equal to 1×1018 atoms/cm3.
Abstract:
In a top-gate transistor in which an oxide semiconductor film, a gate insulating film, a gate electrode layer, and a silicon nitride film are stacked in this order and the oxide semiconductor film includes a channel formation region, nitrogen is added to regions of part of the oxide semiconductor film and the regions become low-resistance regions by forming a silicon nitride film over and in contact with the oxide semiconductor film. A source and drain electrode layers are in contact with the low-resistance regions. A region of the oxide semiconductor film, which does not contact the silicon nitride film (that is, a region overlapping with the gate insulating film and the gate electrode layer) becomes the channel formation region.
Abstract:
A method for manufacturing a semiconductor device including an oxide semiconductor includes the steps of forming an oxide semiconductor film, forming a gate insulating film provided over the oxide semiconductor film, forming a gate electrode in contact with the gate insulating film, a sidewall insulating film in contact with the gate electrode, and forming a source electrode and a drain electrode in contact with the oxide semiconductor film. In the method, the gate insulating film and the sidewall insulating film are formed at a temperature at which oxygen contained in the oxide semiconductor film is inhibited from being eliminated, preferably at a temperature lower than a temperature at which oxygen contained in the oxide semiconductor film is eliminated.
Abstract:
To improve field-effect mobility and reliability of a transistor including an oxide semiconductor film. A semiconductor device includes an oxide semiconductor film, a gate electrode, an insulating film over the gate electrode, the oxide semiconductor film over the insulating film, and a pair of electrodes over the oxide semiconductor film. The oxide semiconductor film includes a first oxide semiconductor film and a second oxide semiconductor film over the first oxide semiconductor film. The first oxide semiconductor film and the second oxide semiconductor film, include the same element. The first oxide semiconductor film includes a region having lower crystallinity than the second oxide semiconductor film.
Abstract:
A semiconductor device is fabricated by a method including the following steps: a first step of forming a semiconductor film containing a metal oxide over an insulating layer; a second step of forming a conductive film over the semiconductor film; a third step of forming a first resist mask over the conductive film and etching the conductive film to form a first conductive layer and to expose a top surface of the semiconductor film that is not covered with the first conductive layer; and a fourth step of forming a second resist mask that covers a top surface and a side surface of the first conductive layer and part of the top surface of the semiconductor film and etching the semiconductor film to form a semiconductor layer and to expose a top surface of the insulating layer that is not covered with the semiconductor layer.
Abstract:
To improve field-effect mobility and reliability in a transistor including an oxide semiconductor film. A semiconductor device includes a transistor including an oxide semiconductor film. The transistor includes a region where the maximum value of field-effect mobility of the transistor at a gate voltage of higher than 0 V and lower than or equal to 10 V is larger than or equal to 40 and smaller than 150; a region where the threshold voltage is higher than or equal to minus 1 V and lower than or equal to 1 V; and a region where the S value is smaller than 0.3 V/decade.
Abstract:
A semiconductor device which has favorable electrical characteristics, a method for manufacturing a semiconductor device with high productivity, and a method for manufacturing a semiconductor device with a high yield are provided. The method for manufacturing a semiconductor device includes a first step of forming a first insulating layer containing silicon and nitrogen, a second step of adding oxygen in a vicinity of a surface of the first insulating layer, a third step of forming a semiconductor layer containing a metal oxide over and in contact with the first insulating layer, a fourth step of forming a second insulating layer containing oxygen over and in contact with the semiconductor layer, a fifth step of performing plasma treatment in an atmosphere containing oxygen at a first temperature, a sixth step of performing plasma treatment in an atmosphere containing oxygen at a second temperature lower than the first temperature, and a seventh step of forming a third insulating layer containing silicon and nitrogen over the second insulating layer.
Abstract:
The display device includes a first substrate provided with a driver circuit region that is located outside and adjacent to a pixel region and includes at least one second transistor which supplies a signal to the first transistor in each of the pixels in the pixel region, a second substrate facing the first substrate, a liquid crystal layer between the first substrate and the second substrate, a first interlayer insulating film including an inorganic insulating material over the first transistor and the second transistor, a second interlayer insulating film including an organic insulating material over the first interlayer insulating film, and a third interlayer insulating film including an inorganic insulating material over the second interlayer insulating film. The third interlayer insulating film is provided in part of an upper region of the pixel region, and has an edge portion on an inner side than the driver circuit region.
Abstract:
A change in electrical characteristics in a semiconductor device including an oxide semiconductor film is inhibited, and the reliability is improved. The semiconductor device includes a gate electrode, a first insulating film over the gate electrode, an oxide semiconductor film over the first insulating film, a source electrode electrically connected to the oxide semiconductor film, a drain electrode electrically connected to the oxide semiconductor film, a second insulating film over the oxide semiconductor film, the source electrode, and the drain electrode, a first metal oxide film over the second insulating film, and a second metal oxide film over the first metal oxide film. The first metal oxide film contains at least one metal element that is the same as a metal element contained in the oxide semiconductor film. The second metal oxide film includes a region where the second metal oxide film and the first metal oxide film are mixed.