Abstract:
It is an object to provide a semiconductor device including an oxide semiconductor, which has stable electric characteristics and high reliability. A semiconductor device having a stacked-layer structure of a gate insulating layer; a first gate electrode in contact with one surface of the gate insulating layer; an oxide semiconductor layer in contact with the other surface of the gate insulating layer and overlapping with the first gate electrode; and a source electrode, a drain electrode, and an oxide insulating layer which are in contact with the oxide semiconductor layer is provided, in which the nitrogen concentration of the oxide semiconductor layer is 2×1019 atoms/cm3 or lower and the source electrode and the drain electrode include one or more of tungsten, platinum, and molybdenum.
Abstract:
To increase capacity per weight of a power storage device, a particle includes a first region, a second region in contact with at least part of a surface of the first region and located on the outside of the first region, and a third region in contact with at least part of a surface of the second region and located on the outside of the second region. The first and the second regions contain lithium and oxygen. At least one of the first region and the second region contains manganese. At least one of the first and the second regions contains an element M. The first region contains a first crystal having a layered rock-salt structure. The second region contains a second crystal having a layered rock-salt structure. An orientation of the first crystal is different from an orientation of the second crystal.
Abstract:
It is an object to provide a highly reliable semiconductor device including a thin film transistor with stable electric characteristics. In a semiconductor device including an inverted staggered thin film transistor whose semiconductor layer is an oxide semiconductor layer, a buffer layer is provided over the oxide semiconductor layer. The buffer layer is in contact with a channel formation region of the semiconductor layer and source and drain electrode layers. A film of the buffer layer has resistance distribution. A region provided over the channel formation region of the semiconductor layer has lower electrical conductivity than the channel formation region of the semiconductor layer, and a region in contact with the source and drain electrode layers has higher electrical conductivity than the channel formation region of the semiconductor layer.
Abstract:
A metal oxide film including a crystal part and having highly stable physical properties is provided. The size of the crystal part is less than or equal to 10 nm, which allows the observation of circumferentially arranged spots in a nanobeam electron diffraction pattern of the cross section of the metal oxide film when the measurement area is greater than or equal to 5 nmφ and less than or equal to 10 nmφ.
Abstract:
It is an object to provide a highly reliable semiconductor device including a thin film transistor with stable electric characteristics. In a semiconductor device including an inverted staggered thin film transistor whose semiconductor layer is an oxide semiconductor layer, a buffer layer is provided over the oxide semiconductor layer. The buffer layer is in contact with a channel formation region of the semiconductor layer and source and drain electrode layers. A film of the buffer layer has resistance distribution. A region provided over the channel formation region of the semiconductor layer has lower electrical conductivity than the channel formation region of the semiconductor layer, and a region in contact with the source and drain electrode layers has higher electrical conductivity than the channel formation region of the semiconductor layer.
Abstract:
It is an object to provide a highly reliable semiconductor device with good electrical characteristics and a display device including the semiconductor device as a switching element. In a transistor including an oxide semiconductor layer, a needle crystal group provided on at least one surface side of the oxide semiconductor layer grows in a c-axis direction perpendicular to the surface and includes an a-b plane parallel to the surface, and a portion except for the needle crystal group is an amorphous region or a region in which amorphousness and microcrystals are mixed. Accordingly, a highly reliable semiconductor device with good electrical characteristics can be formed.
Abstract:
A highly reliable semiconductor device including, an oxide semiconductor is provided. Provided is a semiconductor device including an oxide semiconductor layer, an insulating layer in contact with the oxide semiconductor layer, a gate electrode layer overlapping with the oxide semiconductor layer, and a source electrode layer and a drain electrode layer electrically connected to the oxide semiconductor layer. The oxide semiconductor layer includes a first region having a crystal whose size is less than or equal to 10 nm and a second region which overlaps with the insulating layer with the first region provided therebetween and which includes a crystal part whose c-axis is aligned in a direction parallel to a normal vector of the surface of the oxide semiconductor layer.
Abstract:
An object is to provide a transparent conductive film having favorable transparency and conductivity at low cost. Another object is to reduce the resistivity of a transparent conductive film formed using conductive oxynitride including zinc and aluminum. Another object is to provide a transparent conductive film that is formed using conductive oxynitride including zinc and aluminum. When aluminum and nitrogen are made to be included in a transparent conductive film formed using oxide including zinc to form a transparent conductive film that is formed using conductive oxynitride including zinc and aluminum, the transparent conductive film can have reduced resistivity. Heat treatment after the formation of the transparent conductive film that is formed using conductive oxynitride including zinc and aluminum enables reduction in resistivity of the transparent conductive film.
Abstract:
An object is to provide graphene which has high conductivity and is permeable to ions of lithium or the like. Another object is to provide, with use of the graphene, a power storage device with excellent charging and discharging characteristics. Graphene having a hole inside a ring-like structure formed by carbon and nitrogen has conductivity and is permeable to ions of lithium or the like. The nitrogen concentration in graphene is preferably higher than or equal to 0.4 at. % and lower than or equal to 40 at. %. With use of such graphene, ions of lithium or the like can be preferably made to pass; thus, a power storage device with excellent charging and discharging characteristics can be provided.
Abstract:
A lithium-ion secondary battery with high capacity is provided. Alternatively, a lithium-ion secondary battery with improved cycle characteristics is provided. To achieve this, an active material including a particle having a cleavage plane and a layer containing carbon covering at least part of the cleavage plane is provided. The particle having the cleavage plane contains lithium, manganese, nickel, and oxygen. The layer containing carbon preferably contains graphene. When a lithium-ion secondary battery is fabricated using an electrode including the particle having the cleavage plane at least part of which is covered with the layer containing carbon as an active material, the discharge capacity can be increased and the cycle characteristics can be improved.