Abstract:
The invention relates to a method for fabricating a pseudo-substrate comprising the steps of providing a single crystal ingot, providing a handle substrate, cutting a thin slice from the single crystal ingot, and attaching the thin slice to the handle substrate to form a pseudo-substrate. According to the invention, the thickness of the thin slice is substantially equal or inferior to a critical thickness below which the slice, if taken alone, is no longer mechanically stable. The invention further relates to a semiconductor structure.
Abstract:
A semiconductor-on-insulator substrate for use in RF applications, such as a silicon-on-insulator substrate, comprises a semiconductor top layer, a buried oxide layer and a passivation layer over a support substrate. In addition, a penetration layer is provided between the passivation layer and the silicon support substrate to ensure sufficient high resistivity below RF features and avoid increased migration of dislocations in the support substrate. RF devices may be fabricated on and/or in such a semiconductor-on-insulator substrate.
Abstract:
A thermal treatment system includes a chamber capable of receiving a plurality of substrates, a gas intake path in a distal portion of the chamber located opposite an area for entry of substrates into the chamber, and an outlet path for the gas and/or volatile species generated during the thermal treatment. The outlet path is located in a proximal portion of the chamber located near the area for entry of the substrates into the chamber. The system further includes a collector device in the proximal portion of the chamber. The collector device has a confinement opening oriented toward the distal portion of the chamber, and the collector device defines a compartment communicating with the outlet path, the compartment being configured so that the gas and the volatile species enter into the compartment via the confinement opening and pass through the compartment to reach the outlet path.
Abstract:
A process for smoothing a silicon-on-insulator structure comprising the exposure of a surface of the structure to an inert or reducing gas flow and to a high temperature during a heat treatment includes performing a first heat treatment step at a first temperature and under a first gas flow defined by a first flow rate, and performing a second heat treatment step at a second temperature lower than the first temperature and under a second gas flow defined by a second flow rate lower than the first flow rate.
Abstract:
This disclosure relates to a method for dissolving a silicon dioxide layer in a structure, including, from the back surface thereof to the front surface thereof, a supporting substrate, the silicon dioxide layer and a semiconductor layer, the dissolution method being implemented in a furnace in which structures are supported on a support, the dissolution method resulting in the diffusion of oxygen atoms included in the silicon dioxide layer through the semiconductor layer and generating volatile products, and the furnace including traps suitable for reacting with the volatile products, so as to reduce the concentration gradient of the volatile products parallel to the front surface of at least one structure.
Abstract:
A process comprises the following steps: a) provision of a chamber suitable for receiving a plurality of structures, b) circulation of a gas stream in the chamber so that the chamber has a non-oxidizing atmosphere, c) heat treatment of the plurality of structures at a temperature above a threshold value above which the oxygen present in an oxide of a dielectric diffuses through an active layer reacts with semiconductor material of the active layer and produces a volatile material, the process being noteworthy in that the step b) is carried out so that the gas stream has a rate of circulation between the plurality of structures greater than the rate of diffusion of the volatile material into the gas stream.
Abstract:
The invention relates to a method for measuring thickness variations in a layer of a multilayer semiconductor structure, characterized in that it comprises: acquiring, via an image acquisition system, at least one image of the surface of the structure, the image being obtained by reflecting an almost monochromatic light flux from the surface of the structure; and processing the at least one acquired image in order to determine, from variations in the intensity of the light reflected from the surface, variations in the thickness of the layer to be measured, and in that the wavelength of the almost monochromatic light flux is chosen to correspond to a minimum of the sensitivity of the reflectivity of a layer of the structure other than the layer the thickness variations of which must be measured, the sensitivity of the reflectivity of a layer being equal to the ratio of: the difference between the reflectivities of two multilayer structures for which the layer in question has a given thickness difference; to the given thickness difference, the thicknesses of the other layers being for their part identical in the two multilayer structures. The invention also relates to a measuring system implementing the method.
Abstract:
A structure for radiofrequency applications includes: a support substrate of high-resistivity silicon comprising a lower part and an upper part having undergone a p-type doping to a depth D; mesoporous trapping layer of silicon formed in the doped upper part of the support substrate. The depth D is less than 1 micron and the trapping layer has a porosity rate of between 20% and 60%.
Abstract:
A method comprising the following steps: providing a support substrate and a donor substrate, forming an embrittlement region in the donor substrate so as to delimit a first portion and a second portion on either side of the embrittlement region, assembling the donor substrate on the support substrate, fracturing the donor substrate along the embrittlement region. In addition, the method comprises a step consisting of forming a compressive stress layer in the donor substrate so as to delimit a so-called confinement region interposed between the compressive stress layer and the embrittlement region.
Abstract:
A process comprises the following steps: a) provision of a chamber suitable for receiving the plurality of structures, b) circulation of a gas stream in the chamber so that the chamber has a non-oxidizing atmosphere, c) heat treatment of the plurality of structures at a temperature above a threshold value above which the oxygen present in the oxide of the dielectric diffuses through the active layer reacts with the semiconductor material of the active layer and produces a volatile material, the process being noteworthy in that the step b) is carried out so that the gas stream has a rate of circulation between the plurality of structures greater than the rate of diffusion of the volatile material into the gas stream.