Abstract:
A circuit and method are disclosed for operating a non-volatile memory device, comprising time sampling a reference current or voltage in a floating holding node to obtain a hold voltage and applying the hold voltage in sensing circuitry.
Abstract:
Various embodiments for inhibiting the programming of memory cells coupled to unselected bit lines while programming a memory cell coupled to a selected bit line in a flash memory array are disclosed. Various embodiments for compensating for leakage current during the programming of memory cells coupled to a selected bit line in a flash memory array also are disclosed.
Abstract:
A non-volatile memory device that a semiconductor substrate of a first conductivity type. An array of non-volatile memory cells is in the semiconductor substrate arranged in a plurality of rows and columns. Each memory cell comprises a first region on a surface of the semiconductor substrate of a second conductivity type, and a second region on the surface of the semiconductor substrate of the second conductivity type. A channel region is between the first region and the second region. A word line overlies a first portion of the channel region and is insulated therefrom, and adjacent to the first region and having little or no overlap with the first region. A floating gate overlies a second portion of the channel region, is adjacent to the first portion, and is insulated therefrom and is adjacent to the second region. A coupling gate overlies the floating gate. A bit line is connected to the first region. A negative charge pump circuit generates a first negative voltage. A control circuit receives a command signal and generates a plurality of control signals, in response thereto and applies the first negative voltage to the word line of the unselected memory cells. During the operations of program, read or erase, a negative voltage can be applied to the word lines of the unselected memory cells.
Abstract:
A non-volatile memory device has a charge pump for providing a programming current and an array of non-volatile memory cells. Each memory cell of the array is programmed by the programming current from the charge pump. The array of non-volatile memory cells is partitioned into a plurality of units, with each unit comprising a plurality of memory cells. An indicator memory cell is associated with each unit of non-volatile memory cells. A programming circuit programs the memory cells of each unit using the programming current, when fifty percent or less of the memory cells of each unit is to be programmed, and programs the inverse of the memory cells of each unit and the indicator memory cell associated with each unit, using the programming current, when more than fifty percent of the memory cells of each unit is to be programmed.
Abstract:
A non-volatile memory device comprises a semiconductor substrate of a first conductivity type. An array of non-volatile memory cells is located in the semiconductor substrate and arranged in a plurality of rows and columns. Each memory cell comprises a first region on a surface of the semiconductor substrate of a second conductivity type, and a second region on the surface of the semiconductor substrate of the second conductivity type. A channel region is between the first region and the second region. A word line overlies a first portion of the channel region and is insulated therefrom, and adjacent to the first region and having little or no overlap with the first region. A floating gate overlies a second portion of the channel region, is adjacent to the first portion, and is insulated therefrom and is adjacent to the second region. A coupling gate overlies the floating gate. A bit line is connected to the first region. During the operations of program, read, or erase, a negative voltage can be applied to the word lines and/or coupling gates of the selected or unselected memory cells.
Abstract:
Various embodiments for inhibiting the programming of memory cells coupled to unselected bit lines while programming a memory cell coupled to a selected bit line in a flash memory array are disclosed. Various embodiments for compensating for leakage current during the programming of memory cells coupled to a selected bit line in a flash memory array also are disclosed.