Abstract:
A semiconductor device includes a semiconductor component on a carrier body that includes a ceramic body and a thermistor sensor structure directly connected to the ceramic body. The thermistor sensor structure is integrated into the carrier body and includes a heat sink, on which the carrier body is mounted.
Abstract:
A piezoelectric actuator of a multilayer design includes outer electrodes that are fastened by means of a bonding layer applied by thermal spraying. For example, the outer electrodes are formed as a woven wire fabric. Furthermore, a method for fastening an outer electrode in a piezoelectric actuator is specified.
Abstract:
A method for producing an electric contact-connection of a multilayer component is specified. A main body has internal electrode layers, a insulating material, an electrically conductive material and a photosensitive material are provided. The insulating material and the electrically conductive material are arranged in a structured manner on an outer side of the multilayer component for the alternate contact-connection of the internal electrode layers. The structured arrangement is produced by the photosensitive material. A multilayer component comprising such a contact-connection is furthermore specified.
Abstract:
An electrical component having partial bodies, a base on which the partial bodies are arranged, and at least one connection contact for electrically connecting the partial bodies to a carrier. A method for producing an electrical component having one or more partial bodies is also disclosed.
Abstract:
An electrical connection contact (5) for a ceramic component (2) is specified. The connection contact (5) comprises a first material (M1) and a second material (M2) arranged thereon, wherein the first material (M1) has a high electrical conductivity and the second material (M2) has a low coefficient of thermal expansion.
Abstract:
An electrical connection contact (5) for a ceramic component (2) is specified. The connection contact (5) comprises a first material (M1) and a second material (M2) arranged thereon, wherein the first material (M1) has a high electrical conductivity and the second material (M2) has a low coefficient of thermal expansion.
Abstract:
A multi-layer carrier system and a method for producing a multi-layer carrier system are disclosed. In an embodiment a multi-layer carrier system includes at least one multi-layer ceramic substrate and at least one matrix module of heat-producing semiconductor components, wherein the semiconductor components are arranged on the multi-layer ceramic substrate, and wherein the matrix module is electrically conductively connected to a driver circuit by way of the multi-layer ceramic substrate.
Abstract:
An electronic component and a method for producing an electrical component are disclosed. In an embodiment, the electronic component includes a functional body having a first surface and a second surface, wherein the second surface faces away from the first surface, and a contact electrically linked to the first surface, the contact having an edge region and a central region, wherein the functional body has a first electrical resistance between the first surface and the second surface in a first functional body portion, which overlaps the edge region of the contact as viewed in a plan view of the electronic component, that is greater than a second electrical resistance between the first surface and the second surface in a second functional body portion, which overlaps the central region of the contact as viewed in a plan view of the electronic component.
Abstract:
A method can be used for producing a fully active stack. A stack has the sides A, B, C and D running along the stacking direction. The method includes combining and temporarily making contact with the internal electrodes that make contact with the respective side on one of the sides B or D, such that the internal electrodes that make contact with the respective side can be electrically driven selectively. The electrically driven internal electrodes are electrochemically coated on the sides A and C. The stack is singulated to form a fully active stack with the electrochemically coated internal electrodes on the sides A′ and C′. A method for producing a multilayer component comprising the fully active stack and a fully active multilayer component producible according to the method are furthermore proposed.
Abstract:
A component includes a component body and a contact-connection element composed of sheet metal having a contact region, which has an outer contour line and at least one hole. The contact region is arranged on a side of the component body having a side edge and the outer contour line has straight regions running along straight regions of the side edge. The straight regions of the outer contour line are connected by rounded corners.