摘要:
A method is provided for forming a Pr0.3Ca0.7MnO3 (PCMO) thin film with crystalline structure-related memory resistance properties. The method comprises: forming a PCMO thin film with a first crystalline structure; and, changing the resistance state of the PCMO film using pulse polarities responsive to the first crystalline structure. In one aspect the first crystalline structure is either amorphous or a weak-crystalline. Then, the resistance state of the PCMO film is changed in response to unipolar pulses. In another aspect, the PCMO thin film has either a polycrystalline structure. Then, the resistance state of the PCMO film changes in response to bipolar pulses.
摘要:
A method of fabricating silicon nanostructures includes preparing a silicon wafer as a substrate; forming an oxide layer hardmask directly on the silicon substrate; patterning and etching the oxide hardmask; wet etching the silicon wafer to remove oxide to reduce the size of the oxide hardmask and to form nanostructure elements; and dry etching, in one or more steps, the silicon wafer using the oxide hardmask to form a desired nanostructure having substantially parallel vertical sidewalls thereon.
摘要:
An array of submicron silicon (Si) tubes is provided with a method for patterning submicron Si tubes. The method provides a Si substrate, and forms a silicon dioxide film overlying the Si substrate. An array of silicon dioxide rods is formed from the silicon dioxide film, and Si3N4 tubes are formed surrounding the silicon dioxide rods. The silicon dioxide rods are etched away. Then, exposed regions of the Si substrate are etched, forming Si tubes underlying the Si3N4 tubes. Finally, the Si3N4 tubes are removed.
摘要翻译:亚微米硅(Si)管的阵列具有用于构图亚微米Si管的方法。 该方法提供Si衬底,并形成覆盖Si衬底的二氧化硅膜。 由二氧化硅膜形成二氧化硅棒的阵列,并且在二氧化硅棒周围形成Si 3 N 4 N 4管。 二氧化硅棒被蚀刻掉。 然后,蚀刻Si衬底的暴露区域,形成Si 3 N 4 N 4管子下面的Si管。 最后,去除Si 3 N 4 N 4管。
摘要:
A method of selectively etching a three-layer structure consisting of SiO2, In2O3, and titanium, includes etching the SiO2, stopping at the titanium layer, using C3F8 in a range of between about 10 sccm to 30 sccm; argon in a range of between about 20 sccm to 40 sccm, using an RF source in a range of between about 1000 watts to 3000 watts and an RF bias in a range of between about 400 watts to 800 watts at a pressure in a range of between about 2 mtorr to 6 mtorr; and etching the titanium, stopping at the In2O3 layer, using BCl in a range of between about 10 sccm to 50 sccm; chlorine in a range of between about 40 sccm to 80 sccm, a Tcp in a range of between about 200 watts to 500 watts at an RF bias in a range of between about 100 watts to 200 watts at a pressure in a range of between about 4 mtorr to 8 mtorr.
摘要翻译:选择性地蚀刻由SiO 2,In 2 O 3 N 3和Ti构成的三层结构的方法包括蚀刻SiO 2 >,在钛层上停止,使用C 3 3 F 8 N在约10sccm至30sccm之间; 在约20sccm至40sccm的范围内的氩气,使用在约1000瓦特至3000瓦特之间的范围内的RF源和在约400瓦特至800瓦特范围内的RF偏压, 约2mtorr至6mtorr; 并且使用在约10sccm至50sccm之间的范围内的BCl蚀刻钛,停止在In 2 N 3 O 3层处; 在约40sccm至80sccm的范围内的氯,在约200瓦特至200瓦特之间的RF偏压下在约200瓦特至500瓦特之间的范围内的T cp < 在约4mtorr至8mtorr的范围内的压力。
摘要:
A dry etch process is described for selectively etching silicon nitride from conductive oxide material for use in a semiconductor fabrication process. Adding an oxidant in the etch gas mixture could increase the etch rate for the silicon nitride while reducing the etch rate for the conductive oxide, resulting in improving etch selectivity. The disclosed selective etch process is well suited for ferroelectric memory device fabrication using conductive oxide/ferroelectric interface having silicon nitride as the encapsulated material for the ferroelectric.
摘要:
A method for forming a high-luminescence Si electroluminescence (EL) phosphor is provided, with an EL device made from the Si phosphor. The method comprises: depositing a silicon-rich oxide (SRO) film, with Si nanocrystals, having a refractive index in the range of 1.5 to 2.1, and a porosity in the range of 5 to 20%; and, post-annealing the SRO film in an oxygen atmosphere. DC-sputtering or PECVD processes can be used to deposit the SRO film. In one aspect the method further comprises: HF buffered oxide etching (BOE) the SRO film; and, re-oxidizing the SRO film, to form a SiO2 layer around the Si nanocrystals in the SRO film. In one aspect, the SRO film is re-oxidized by annealing in an oxygen atmosphere. In this manner, a layer of SiO2 is formed around the Si nanocrystals having a thickness in the range of 1 to 5 nanometers (nm).
摘要:
A method of forming a ferroelectric thin film on a high-k layer includes preparing a silicon substrate; forming a high-k layer on the substrate; depositing a seed layer of ferroelectric material at a relatively high temperature on the high-k layer; depositing a top layer of ferroelectric material on the seed layer at a relatively low temperature; and annealing the substrate, the high-k layer and the ferroelectric layers to form a ferroelectric thin film.
摘要:
A method for obtaining reversible resistance switches on a PCMO thin film when integrated with a highly crystallized seed layer includes depositing, by MOCVD, a seed layer of PCMO, in highly crystalline form, thin film, having a thickness of between about 50 Å to 300 Å, depositing a second PCMO thin film layer on the seed layer, by spin coating, having a thickness of between about 500 Å to 3000 Å, to form a combined PCMO layer; increasing the resistance of the combined PCMO film in a semiconductor device by applying a negative electric pulse of between about −4V to −5V, having a pulse width of between about 75 nsec to 1 μsec; and decreasing the resistance of the combined PCMO layer in a semiconductor device by applying a positive electric pulse of between about +2.5V to +4V, having a pulse width greater than 2.0 μsec.
摘要:
An asymmetric memory cell and method for forming an asymmetric memory cell are provided. The method comprises: forming a bottom electrode having a first area; forming an electrical pulse various resistance (EPVR) material overlying the bottom electrode; forming a top electrode overlying the EPVR layer having a second area, less than the first area. In some aspects the second area is at least 20% smaller than the first area. The EPVR is a material such as colossal magnetoresistance (CMR), high temperature super conducting (HTSC), or perovskite metal oxide materials. The method further comprises: inducing an electric field between the electrodes; inducing current flow through the EPVR adjacent the top electrode; and, in response to inducing current flow through the EPVR adjacent the top electrode, modifying the resistance of the EPVR. Typically, the resistance is modified within the range of 100 ohms to 10 mega-ohms.
摘要:
A method of fabricating a non-volatile ferroelectric memory transistor includes forming a bottom electrode; depositing a ferroelectric layer over an active region beyond the margins of the bottom electrode; depositing a top electrode on the ferroelectric layer; and metallizing the structure to form a source electrode, a gate electrode and a drain electrode. A non-volatile ferroelectric memory transistor includes a bottom electrode formed above a gate region, wherein the bottom electrode has a predetermined area within a peripheral boundary; a ferroelectric layer extending over and beyond the bottom electrode peripheral boundary; and a top electrode formed on said ferroelectric layer.