Abstract:
A field effect transistor with epitaxial structures includes a fin-shaped structure and a metal gate across the fin-shaped structure. The metal gate includes a pair of recess regions disposed on two sides of the bottom of the metal gate.
Abstract:
A fin-shaped structure includes a substrate having a first fin-shaped structure located in a first area and a second fin-shaped structure located in a second area, wherein the second fin-shaped structure includes a ladder-shaped cross-sectional profile part. The present invention also provides two methods of forming this fin-shaped structure. In one case, a substrate having a first fin-shaped structure and a second fin-shaped structure is provided. A treatment process is performed to modify an external surface of the top of the second fin-shaped structure, thereby forming a modified part. A removing process is performed to remove the modified part through a high removing selectivity to the first fin-shaped structure and the second fin-shaped structure, and the modified part, thereby the second fin-shaped structure having a ladder-shaped cross-sectional profile part is formed.
Abstract:
A method of manufacturing a semiconductor device including the steps of providing a substrate having first type semiconductor regions and second type semiconductor regions, forming a conformal first epitaxy mask layer on the substrate, forming first type epitaxial layer in the substrate of the first type semiconductor regions, forming a conformal second epitaxy mask layer on the substrate, forming second type epitaxial layer in the substrate of the second type semiconductor regions, and removing the second epitaxy mask layer.
Abstract:
A MOS transistor including a gate structure, an epitaxial spacer and an epitaxial structure is provided. The gate structure is disposed on a substrate. The epitaxial spacer is disposed on the substrate besides the gate structure, wherein the epitaxial spacer includes silicon and nitrogen, and the ratio of nitrogen to silicon is larger than 1.3. The epitaxial structure is disposed in the substrate besides the epitaxial spacer. A semiconductor process includes the following steps for forming an epitaxial structure. A gate structure is formed on a substrate. An epitaxial spacer is formed on the substrate besides the gate structure for defining the position of an epitaxial structure, wherein the epitaxial spacer includes silicon and nitrogen, and the ratio of nitrogen to silicon is larger than 1.3. The epitaxial structure is formed in the substrate besides the epitaxial spacer.
Abstract:
A method of manufacturing a semiconductor device including the steps of providing a substrate having first type semiconductor regions and second type semiconductor regions, forming a conformal first epitaxy mask layer on the substrate, forming first type epitaxial layer in the substrate of the first type semiconductor regions, forming a conformal second epitaxy mask layer on the substrate, forming second type epitaxial layer in the substrate of the second type semiconductor regions, and removing the second epitaxy mask layer.
Abstract:
A semiconductor device includes a fin structure, an isolation structure, a gate structure and an epitaxial structure. The fin structure protrudes from the surface of the substrate and includes a top surface and two sidewalls. The isolation structure surrounds the fin structure. The gate structure overlays the top surface and the two sidewalls of a portion of the fin structure, and covers a portion of the isolation structure. The isolation structure under the gate structure has a first top surface, and the isolation structure at two sides of the gate structure has a second top surface. The first top surface is higher than the second top surface. The epitaxial layer is disposed at one side of the gate structure and is in direct contact with the fin structure.
Abstract:
A semiconductor process includes the following steps. A substrate is provided. At least a fin-shaped structure is formed on the substrate and a gate structure partially overlapping the fin-shaped structure is formed. Subsequently, a dielectric layer is blanketly formed on the substrate, and a part of the dielectric layer is removed to form a first spacer on the fin-shaped structure and a second spacer besides the fin-shaped structure. Furthermore, the second spacer and a part of the fin-shaped structure are removed to form at least a recess at a side of the gate structure, and an epitaxial layer is formed in the recess.
Abstract:
A method of controlling an etching process for forming an epitaxial structure includes the following steps. A substrate having a gate thereon is provided. A spacer is formed on the substrate beside the gate to define the position of the epitaxial structure. A thickness of the spacer is measured. The etching time of a first etching process is set according to the thickness. The first etching process is performed to form a recess in the substrate beside the spacer. The epitaxial structure is formed in the recess.
Abstract:
A method for fabricating semiconductor device includes the steps of: forming a fin-shaped structure on a substrate; forming a gate dielectric layer on the fin-shaped structure; forming a gate electrode on the fin-shaped structure; performing a nitridation process to implant ions into the gate dielectric layer adjacent to two sides of the gate electrode; and forming an epitaxial layer adjacent to two sides of the gate electrode.
Abstract:
A fin-shaped structure includes a substrate having a first fin-shaped structure located in a first area and a second fin-shaped structure located in a second area, wherein the second fin-shaped structure includes a ladder-shaped cross-sectional profile part. The present invention also provides two methods of forming this fin-shaped structure. In one case, a substrate having a first fin-shaped structure and a second fin-shaped structure is provided. A treatment process is performed to modify an external surface of the top of the second fin-shaped structure, thereby forming a modified part. A removing process is performed to remove the modified part through a high removing selectivity to the first fin-shaped structure and the second fin-shaped structure, and the modified part, thereby the second fin-shaped structure having a ladder-shaped cross-sectional profile part is formed.