Abstract:
Various embodiments of the present invention are directed to methods of forming single-crystal metal-silicide nanowires and resulting nanowire structures. In one embodiment of the present invention, a method of fabricating nanowires is disclosed. In the method, a number of nanowire-precursor members are formed. Each of the nanowire-precursor members includes a substantially single-crystal silicon region and a polycrystalline- metallic region. The substantially single-crystal silicon region and the polycrystalline-metallic region of each of the nanowire-precursor members is reacted to form corresponding substantially single-crystal metal-silicide nanowires. In another embodiment of the present invention, a nanowire structure is disclosed. The nanowire structure includes a substrate having an electrically insulating layer. A number of substantially single-crystal metal-silicide nanowires are positioned on the electrically insulating layer.
Abstract:
A method of forming a plurality of NERS-active structures is disclosed. Particularly, a substrate having a surface and a liquid including nanoparticles is deposited on at least a portion of the surface of the substrate. At least one electric field may be generated proximate to the surface and at least a portion of the nanoparticles may be arranged via the electric field. A system includes at least two electrodes configured for producing at least one electric field for substantially arranging nanoparticles substantially according to a selected pattern. A NERS-active structure includes a substrate and a plurality of features located at predetermined positions on a surface of the substrate and at least one NERS-active nanoparticle at least partially embedded therein.
Abstract:
A Raman spectroscopy system is disclosed which includes a sub-wavelength resonant grating filter and a photodiode with integrated sub-wavelength resonant grating filter are disclosed. The resonant grating filter comprises an array of diffraction elements having a periodic spacing that is less than the wavelength of radiation to be filtered and which are formed over a waveguide layer. The filter, which can reject a specific wavelength of radiation, can be placed between a Raman sample and a Raman detector in order to filter radiation that is elastically scattered from the sample while transmitting other wavelengths. The wavelength rejected by the filter can be selected by tilting the filter with respect to the radiation incident upon the filter.
Abstract:
A NERS-active structure includes a deformable, active nanoparticle support structure for supporting a first nanoparticle and a second nanoparticle that is disposed proximate the first nanoparticle. The nanoparticles each comprise a NERS-active material. The deformable, active nanoparticle support structure is configured to vary the distance between the first nanoparticle and the second nanoparticle while performing NERS. Various active nanoparticle support structures are disclosed. A NERS system includes such a NERS-active structure, a radiation source for generating radiation scatterable by an analyte located proximate the NERS-active structure, and a radiation detector for detecting Raman scattered radiation scattered by the analyte. A method for performing NERS includes providing such a NERS-active structure, providing an analyte at a location proximate the NERS-active structure, irradiating the NERS-active structure and the analyte with radiation, varying the distance between the nanoparticles, and detecting Raman scattered radiation scattered by the analyte.
Abstract:
Devices, systems, and methods for enhancing Raman spectroscopy and hyper-Raman are disclosed. A molecular analysis device for performing Raman spectroscopy comprises a substrate and a laser source disposed on the substrate. The laser source may be configured for emanating a laser radiation, which may irradiate an analyte disposed on a Raman enhancement structure. The Raman enhancement structure may be disposed in a waveguide. The molecular analysis device also includes a wavelength demultiplexer and radiation sensors disposed on the substrate and configured for receiving a Raman scattered radiation, which may be generated by the irradiation of the analyte and Raman enhancement structure.
Abstract:
Devices and methods for detecting the constituent parts of biological polymers are disclosed. A molecular analysis device includes a molecule sensor and a molecule guide. The molecule sensor comprises a nanostructure, which is configured for producing a nanostructure-enhanced Raman scattered radiation when an excitation radiation irradiates at least a portion of a molecule disposed near the NERS structure.
Abstract:
A lift-off material for use in fabricating a nanostructure. The lift-off material includes a first material adapted to, and present in an amount sufficient to provide a predetermined amount of mechanical strength to the nanostructure during fabrication; and a second material adapted to, and present in an amount sufficient to provide a predetermined solubility to the lift-off material.
Abstract:
An apparatus for filtering species in a fluid includes a body having a first side and a second side, a first set of nano-fingers positioned on the body near the first side, a second set of nano-fingers positioned on the body closer to the second side than the first set of nano-fingers, wherein the nano-fingers in the second set of nano-fingers are arranged on the body at a relatively more densely than the nano-fingers in the first set of nano-fingers, and a cover positioned over the first set of nano-fingers and the second set of nano-fingers to form a channel with the body within which the first and second sets of nano-fingers are positioned.
Abstract:
Examples of integrated sensors are disclosed herein. An example of an integrated sensor includes a substrate and a sensing member formed on a surface of the substrate. The sensing member includes collapsible signal amplifying structures and an area surrounding the collapsible signal amplifying structures that enables self-positioning of droplets exposed thereto toward the collapsible signal amplifying structures.
Abstract:
Devices to detect a substance and methods of producing such a device are disclosed. An example device to detect a substance includes a housing defining an externally accessible chamber and a seal to enclose at least a portion of the chamber. The example device also includes a substrate includes nanoparticles positioned within the chamber. The nanoparticles to react to the substance when exposed thereto. The example device also includes a non-analytic solution within the chamber to protect the nanoparticles from premature exposure.