Methods of forming single-crystal metal-silicide nanowires and resulting nanowire structures
    41.
    发明申请
    Methods of forming single-crystal metal-silicide nanowires and resulting nanowire structures 失效
    形成单晶金属硅化物纳米线和所得纳米线结构的方法

    公开(公告)号:US20080193359A1

    公开(公告)日:2008-08-14

    申请号:US11707601

    申请日:2007-02-13

    CPC classification number: C30B29/10 C30B29/60

    Abstract: Various embodiments of the present invention are directed to methods of forming single-crystal metal-silicide nanowires and resulting nanowire structures. In one embodiment of the present invention, a method of fabricating nanowires is disclosed. In the method, a number of nanowire-precursor members are formed. Each of the nanowire-precursor members includes a substantially single-crystal silicon region and a polycrystalline- metallic region. The substantially single-crystal silicon region and the polycrystalline-metallic region of each of the nanowire-precursor members is reacted to form corresponding substantially single-crystal metal-silicide nanowires. In another embodiment of the present invention, a nanowire structure is disclosed. The nanowire structure includes a substrate having an electrically insulating layer. A number of substantially single-crystal metal-silicide nanowires are positioned on the electrically insulating layer.

    Abstract translation: 本发明的各种实施方案涉及形成单晶金属硅化物纳米线和所得纳米线结构的方法。 在本发明的一个实施例中,公开了一种制造纳米线的方法。 在该方法中,形成许多纳米线前体部件。 每个纳米线前体构件包括大致单晶硅区域和多晶金属区域。 每个纳米线前体部件的大致单晶硅区域和多晶金属区域反应形成对应的基本单晶金属硅化物纳米线。 在本发明的另一个实施方案中,公开了一种纳米线结构。 纳米线结构包括具有电绝缘层的衬底。 大量单晶金属硅化物纳米线位于电绝缘层上。

    Method for arranging nanoparticles by way of an electric field, structures and systems therefor
    42.
    发明申请
    Method for arranging nanoparticles by way of an electric field, structures and systems therefor 审中-公开
    通过电场,结构和系统布置纳米颗粒的方法

    公开(公告)号:US20080093217A1

    公开(公告)日:2008-04-24

    申请号:US11584678

    申请日:2006-10-20

    CPC classification number: G01N21/658

    Abstract: A method of forming a plurality of NERS-active structures is disclosed. Particularly, a substrate having a surface and a liquid including nanoparticles is deposited on at least a portion of the surface of the substrate. At least one electric field may be generated proximate to the surface and at least a portion of the nanoparticles may be arranged via the electric field. A system includes at least two electrodes configured for producing at least one electric field for substantially arranging nanoparticles substantially according to a selected pattern. A NERS-active structure includes a substrate and a plurality of features located at predetermined positions on a surface of the substrate and at least one NERS-active nanoparticle at least partially embedded therein.

    Abstract translation: 公开了一种形成多个NERS-活性结构的方法。 特别地,具有表面和包含纳米颗粒的液体的基底沉积在基底表面的至少一部分上。 可以在表面附近产生至少一个电场,并且可以经由电场布置至少一部分纳米颗粒。 一种系统包括至少两个电极,所述至少两个电极被配置用于产生至少一个电场,用于基本上根据所选择的图案基本上布置纳米颗粒。 NERS活性结构包括基底和位于基底表面上的预定位置的多个特征以及至少部分地嵌入其中的至少一个NERS-活性纳米颗粒。

    Raman spectroscopy system and method using a subwavelength resonant grating filter
    43.
    发明申请
    Raman spectroscopy system and method using a subwavelength resonant grating filter 有权
    拉曼光谱系统和使用亚波长谐振光栅滤波器的方法

    公开(公告)号:US20070165214A1

    公开(公告)日:2007-07-19

    申请号:US11257073

    申请日:2006-01-17

    Abstract: A Raman spectroscopy system is disclosed which includes a sub-wavelength resonant grating filter and a photodiode with integrated sub-wavelength resonant grating filter are disclosed. The resonant grating filter comprises an array of diffraction elements having a periodic spacing that is less than the wavelength of radiation to be filtered and which are formed over a waveguide layer. The filter, which can reject a specific wavelength of radiation, can be placed between a Raman sample and a Raman detector in order to filter radiation that is elastically scattered from the sample while transmitting other wavelengths. The wavelength rejected by the filter can be selected by tilting the filter with respect to the radiation incident upon the filter.

    Abstract translation: 公开了一种拉曼光谱系统,其包括亚波长谐振光栅滤波器和具有集成子波长谐振光栅滤波器的光电二极管。 谐振光栅滤波器包括衍射元件的阵列,其具有小于待滤波的辐射的波长并且在波导层上形成的周期间隔。 可以将能够抑制特定波长的辐射的滤光器放置在拉曼样品和拉曼检测器之间,以便过滤从样品弹性散射的辐射,同时传输其他波长。 可以通过使过滤器相对于入射到过滤器上的辐射倾斜来选择由过滤器拒绝的波长。

    Dynamically variable separation among nanoparticles for nano-enhanced Raman spectroscopy (NERS) molecular sensing
    44.
    发明申请
    Dynamically variable separation among nanoparticles for nano-enhanced Raman spectroscopy (NERS) molecular sensing 有权
    用于纳米增强拉曼光谱(NERS)分子感测的纳米颗粒之间的动态变化分离

    公开(公告)号:US20070086001A1

    公开(公告)日:2007-04-19

    申请号:US11252134

    申请日:2005-10-17

    CPC classification number: G01N21/658

    Abstract: A NERS-active structure includes a deformable, active nanoparticle support structure for supporting a first nanoparticle and a second nanoparticle that is disposed proximate the first nanoparticle. The nanoparticles each comprise a NERS-active material. The deformable, active nanoparticle support structure is configured to vary the distance between the first nanoparticle and the second nanoparticle while performing NERS. Various active nanoparticle support structures are disclosed. A NERS system includes such a NERS-active structure, a radiation source for generating radiation scatterable by an analyte located proximate the NERS-active structure, and a radiation detector for detecting Raman scattered radiation scattered by the analyte. A method for performing NERS includes providing such a NERS-active structure, providing an analyte at a location proximate the NERS-active structure, irradiating the NERS-active structure and the analyte with radiation, varying the distance between the nanoparticles, and detecting Raman scattered radiation scattered by the analyte.

    Abstract translation: NERS活性结构包括用于支撑第一纳米颗粒的可变形的活性纳米颗粒支撑结构和邻近第一纳米颗粒设置的第二纳米颗粒。 纳米颗粒各自包含NERS-活性材料。 可变形的活性纳米颗粒支撑结构被配置为在执行NERS的同时改变第一纳米颗粒和第二纳米颗粒之间的距离。 公开了各种活性纳米颗粒载体结构。 NERS系统包括这样的NERS-活性结构,用于产生由位于NERS-活性结构附近的分析物可散射的辐射的辐射源,以及用于检测被分析物散射的拉曼散射辐射的辐射检测器。 执行NERS的方法包括提供这样的NERS活性结构,在靠近NERS-活性结构的位置提供分析物,用辐射照射NERS-活性结构和分析物,改变纳米颗粒之间的距离并检测拉曼散射 被分析物散射的辐射。

    Monolithic system and method for enhanced Raman spectroscopy
    45.
    发明授权
    Monolithic system and method for enhanced Raman spectroscopy 有权
    用于增强拉曼光谱的单片系统和方法

    公开(公告)号:US07151599B2

    公开(公告)日:2006-12-19

    申请号:US11044421

    申请日:2005-01-27

    CPC classification number: G01N21/658 G01N2201/0873

    Abstract: Devices, systems, and methods for enhancing Raman spectroscopy and hyper-Raman are disclosed. A molecular analysis device for performing Raman spectroscopy comprises a substrate and a laser source disposed on the substrate. The laser source may be configured for emanating a laser radiation, which may irradiate an analyte disposed on a Raman enhancement structure. The Raman enhancement structure may be disposed in a waveguide. The molecular analysis device also includes a wavelength demultiplexer and radiation sensors disposed on the substrate and configured for receiving a Raman scattered radiation, which may be generated by the irradiation of the analyte and Raman enhancement structure.

    Abstract translation: 公开了用于增强拉曼光谱和超拉曼的装置,系统和方法。 用于执行拉曼光谱的分子分析装置包括设置在基板上的基板和激光源。 激光源可以被配置为发射激光辐射,其可照射设置在拉曼增强结构上的分析物。 拉曼增强结构可以设置在波导中。 该分子分析装置还包括布置在基板上的波长解复用器和辐射传感器,并且被配置为用于接收可以通过分析物的照射和拉曼增强结构产生的拉曼散射辐射。

    Lift-off material
    47.
    发明申请
    Lift-off material 审中-公开
    剥离材料

    公开(公告)号:US20060108322A1

    公开(公告)日:2006-05-25

    申请号:US10993451

    申请日:2004-11-19

    Applicant: Wei Wu Zhiyong Li

    Inventor: Wei Wu Zhiyong Li

    Abstract: A lift-off material for use in fabricating a nanostructure. The lift-off material includes a first material adapted to, and present in an amount sufficient to provide a predetermined amount of mechanical strength to the nanostructure during fabrication; and a second material adapted to, and present in an amount sufficient to provide a predetermined solubility to the lift-off material.

    Abstract translation: 用于制造纳米结构的剥离材料。 剥离材料包括第一材料,其适于并且以足以在制造期间向纳米结构提供预定量的机械强度的量存在; 以及第二材料,其适于并且以足以向剥离材料提供预定溶解度的量存在。

Patent Agency Ranking