摘要:
An exhaust gas control apparatus includes: a fuel supply portion that is provided so as to supply fuel to a portion of an exhaust passage, which is upstream of an exhaust gas purification member provided in the exhaust passage; a heating portion that is disposed between the fuel supply portion and the exhaust gas purification member; and a control portion that controls an amount of electric power that is supplied to the heating portion, based on an exhaust gas temperature and an exhaust gas flow rate.
摘要:
A soot discharge amount is calculated by multiplying a “steady discharge amount” by a “transient correction value.” The steady discharge amount is a soot discharge amount in a steady operation state, and is acquired through table search. For each of a plurality of factors which affect the soot discharge amount, a steady value (value obtained through table search) of the factor and a transient value (current value) of the factor are substituted for a characteristic equation which represents a change in the soot discharge amount with the value of the factor, whereby a steady characteristic value and a transient characteristic value are acquired. The “ratio between the steady characteristic value and the transient characteristic value” is then calculated for each factor. The transient correction value is obtained by multiplying together all values of the “ratio between the steady characteristic value and the transient characteristic value” obtained for the factors.
摘要:
A soot generation amount estimation apparatus obtains a generation speed of a precursor of soot (accordingly, the concentration of the precursor) in consideration of formation of the precursor from fuel, thermal decomposition of the formed precursor, and formation of soot from the formed precursor, and estimates a generation speed of soot (accordingly, the concentration of soot (the generation amount of soot)) in consideration of formation of soot from the precursor, which depends on the concentration of the precursor, and oxidation of the formed soot. The apparatus employs a reaction model in which the reaction process in which soot is generated from fuel is divided into two steps; i.e., a reaction process in which a precursor is generated from fuel and a reaction process in which soot is generated from the precursor. Thus, phenomena, such as a “delay in soot generation” in the reaction process in which soot is generated from fuel, can be accurately simulated.
摘要:
A technique is provided which, in an exhaust gas recirculation apparatus for an internal combustion engine, can calculate a low-pressure EGR rate and a high-pressure EGR rate in an accurate manner, and control the flow rates of both a low pressure EGR passage and a high pressure EGR passage in a closed-loop control manner, thereby to make the temperature of intake air and a supercharging pressure stable and to suppress the deterioration of exhaust emissions as well as the deterioration of power performance. The low pressure EGR rate, representative of the proportion of an amount of low pressure EGR gas to an amount of intake air sucked into the internal combustion engine, and the high pressure EGR rate, representative of the proportion of an amount of high pressure EGR gas to the amount of intake air, are calculated by using a CO2 concentration in an intake passage at a location downstream of a connection portion of the low pressure EGR passage and upstream of a connection portion of the high pressure EGR passage, a CO2 concentration in the intake passage at a location downstream the connection portion of the high pressure EGR passage, and a CO2 concentration of an exhaust gas discharged from the internal combustion engine (S103). The low pressure EGR rate and the high pressure EGR rate to be calculated are controlled to individual target values, respectively (S104).
摘要:
An exhaust gas recirculation device of an internal combustion engine (1) including a low-pressure EGR passage (20), a high-pressure EGR passage (21), a low-pressure EGR valve (23) and a high-pressure EGR valve (24) further includes an air-fuel ratio sensor (12) that is disposed in the exhaust passage (4) upstream of the position of its connection with the low-pressure EGR passage (20). In the case where a predetermined fuel-cut condition is satisfied, an ECU (30) estimates the flow amounts of exhaust gas flowing in the low-pressure EGR passage (20) and the high-pressure EGR passage (21), on the basis of the oxygen concentrations acquired by the air-fuel ratio sensor (12) at timings at which the exhaust gases recirculated into the intake passage (3) via the low-pressure EGR passage (20) and via the high-pressure EGR passage (21) reach the air-fuel ratio sensor (12), respectively.
摘要:
An exhaust gas control system for an internal combustion engine includes a turbocharger that includes a compressor arranged in an intake passage, and a turbine arranged in an exhaust passage; a low-pressure EGR unit that recirculates a portion of exhaust gas back to the internal combustion engine through a low-pressure EGR passage that provides communication between the exhaust passage, at a portion downstream of the turbine, and the intake passage, at a portion upstream of the compressor; a low-pressure EGR valve that is provided in the low-pressure EGR passage, and that changes the flow passage area of the low-pressure EGR passage; and a valve control unit that executes an opening/closing control over the low-pressure EGR valve. When it is determined that the internal combustion engine is under a predetermined low-temperature environment, the low-pressure EGR valve is kept closed while the internal combustion engine is in the fuel-supply cutoff operation mode.
摘要:
In a gas mixture temperature estimation method for an internal combustion engine, before a forefront portion of a gas mixture reaches an inner wall surface of the combustion chamber, the gas mixture temperature is calculated in accordance with a predetermined equation which is based on the assumption that no head exchange occurs between the gas mixture and cylinder interior gas which exists around the gas mixture without mixing with fuel. After the gas mixture forefront portion reaches the inner wall surface of the combustion chamber, the gas mixture temperature calculated in accordance with the equation is corrected in consideration of the quantity of heat transfer between the gas mixture and the cylinder interior gas and the quantity of heat transfer between the gas mixture and the wall.
摘要:
This control apparatus obtains a relation (trade-off line) between NOx generation amount and PM generation amount with EGR ratio serving as a parameter from an NOx generation amount estimation model which calculates the NOx generation amount on the basis of the oxygen mole concentration of intake gas and a PM generation amount estimation model which calculates the PM generation amount on the basis of an excess air factor. Further, the control apparatus obtains a straight line (ratio determination line) which passes through a point (appropriate point A) corresponding to a combination of steady-condition appropriate values of the NOx generation amount and the PM generation amount under the present operating conditions and which has a slope K determined in consideration of a regulation value based on a law relating to emission control. The control apparatus uses an intersection (target point B) between the trade-off line and the ratio determination line as an emission target value, and sets an EGR ratio target value Regrt to an EGR ratio corresponding to the target point B.
摘要:
A gas-mixture-ignition-time estimation apparatus for an internal combustion engine estimates the temperature of a premixed gas mixture for PCCI combustion (i.e., cylinder interior temperature Tg), while relating it to the angle CA, on the basis of a state quantity of the cylinder interior gas at the time of start of compression (CAin) (heat energy of the cylinder interior gas at the time of start of compression), the amount of a change in the state quantity of the cylinder interior gas attributable to compression in a compression stroke (minute piston work), and the heat generation quantity of a cool flame generated in PCCI combustion prior to autoignition (hot flame) (cool flame heat generation quantity Aqlto). A time when the cylinder interior temperature Tg reaches a predetermined autoignition start temperature Tig is estimated as an autoignition start time (Caig) of the premixed gas mixture related to PCCI combustion. Since the cool flame heat generation quantity Oqlto is taken into consideration, the autoignition start time related to PCCI combustion can be estimated accurately.
摘要:
A control apparatus for a motor vehicle is provided in which each of a plurality of output values of the vehicle varies depending upon a plurality of input control parameters for controlling the vehicle. The control apparatus changes the input control parameter or parameters so that each of the output values becomes substantially equal to a corresponding target output value. The control apparatus then determines adapted values of the input control parameters, based on values of the input control parameters obtained when each of the output values becomes substantially equal to the corresponding target output value or falls within a permissible adaptation range of the target output value.