摘要:
A testing method is described that applies a sequence external magnetic fields of varying strength to MRAM cells (such as those with MTJ memory elements) in chips or wafers to selectively screen out cells with low or high thermal stability factor. The coercivity (Hc) is used as a proxy for thermal stability factor (delta). In the various embodiments the sequence, direction and strength of the external magnetic fields is used to determine the high coercivity cells that are not switched by a normal field and the low coercivity cells that are switched by a selected low field. In some embodiment the MRAM's standard internal electric current can be used to switch the cells. Standard circuit-based resistance read operations can be used to determine the response of each cell to these magnetic fields and identify the abnormal high and low coercivity cells.
摘要:
A spin transfer torque magnetic random access memory (STTMRAM) element and a method of manufacturing the same is disclosed having a free sub-layer structure with enhanced internal stiffness. A first free sub-layer is deposited, the first free sub-layer being made partially of boron (B), annealing is performed of the STTMRAM element at a first temperature after depositing the first free sub-layer to reduce the B content at an interface between the first free sub-layer and the barrier layer, the annealing causing a second free sub-layer to be formed on top of the first free sub-layer and being made partially of B, the amount of B of the second free sub-layer being greater than the amount of B in the first free sub-layer. Cooling down the STTMRAM element to a second temperature that is lower than the first temperature and depositing a third free sub-layer directly on top of the second free layer, with the third free sub-layer being made partially of boron (B), wherein the amount of B in the third sub-free layer is less than the amount of B in the second free sub-layer.
摘要:
A magnetic random access memory (MRAM) element is configured to store a state when electric current flows and includes a first magnetic tunnel junction (MTJ) for storing a data bit and a second MTJ for storing a reference bit. The direction of magnetization of the FL is determinative of the data bit stored in the at least one MTJ. Further, the MTJ includes a magnetic reference layer (RL) having a magnetization with a direction that is perpendicular to the film plane, and a magnetic pinned layer (PL) having a magnetization with a direction that is perpendicular to the film plane. The direction of magnetization of the RL and the PL are anti-parallel relative to each other in the first MTJ. The direction of magnetization of the FL, the RL and the PL are parallel relative to each other in the second MTJ.
摘要:
Methods using a sequence of externally generated magnetic fields to initialize the magnetization directions of each of the layers in perpendicular MTJ MRAM elements for data and reference bits when the required magnetization directions are anti-parallel are described. The coercivity of the fixed pinned and reference layers can be made unequal so that one of them can be switched by a magnetic field that will reliably leave the other one unswitched. Embodiments of the invention utilize the different effective coercivity fields of the pinned, reference and free layers to selectively switch the magnetization directions using a sequence of magnetic fields of decreasing strength. Optionally the chip or wafer can be heated to reduce the required field magnitude. It is possible that the first magnetic field in the sequence can be applied during an annealing step in the MRAM manufacture process.
摘要:
A spin toque transfer magnetic random access memory (STTMRAM) element and a method of manufacturing the same is disclosed having a free sub-layer structure with enhanced internal stiffness. A first free sub-layer is deposited, the first free sub-layer being made partially of boron (B). Annealing is performed of the STTMRAM element at a first temperature after depositing the first free sub-layer to reduce the B content at an interface between the first free sub-layer and the barrier layer. Cooling down of the STTMRAM element to a second temperature that is lower than the first temperature is performed and a third free sub-layer is directly deposited on top of the second free layer, with the third free sub-layer being made partially of boron (B), wherein the amount of B in the third sub-free layer is less than the amount of B in the second free sub-layer.
摘要:
The present invention relates to memory devices incorporating therein a novel memory cell architecture which includes an array of selection transistors sharing a common channel and method for making the same. A memory device comprises a semiconductor substrate having a first type conductivity, a plurality of drain regions and a common source region separated by a common plate channel in the substrate, and a selection gate disposed on top of the plate channel with a gate dielectric layer interposed therebetween. The plurality of drain regions and the common source region have a second type conductivity opposite to the first type provided in the substrate.
摘要:
The present invention relates to transistor devices having a trough channel structure through which electrical current flows and methods for making the same. A transistor device having a semiconductor trough structure comprises a semiconductor substrate of a first conductivity type having a top surface; a semiconductor trough protruded from the top surface of the substrate along a first direction and having two top surfaces, two outer lateral surfaces, and an inner surface; a layer of isolation insulator disposed on the substrate and abutting the outer lateral surfaces of the semiconductor trough; a gate dielectric layer lining the inner surface and the top surfaces of the semiconductor trough; and a gate electrode disposed on top of the isolation insulator and extending over and filling the semiconductor trough with the gate dielectric layer interposed therebetween. The gate electrode extends along a second direction not parallel to the first direction provided in the semiconductor trough. Regions of the semiconductor trough not directly beneath the gate electrode have a second conductivity type opposite to the first conductivity type provided in the substrate.
摘要:
The present invention relates to resistive memory devices incorporating therein vertical selection transistors and methods for making the same. A resistive memory device comprises a semiconductor substrate having a first type conductivity; a plurality of vertical selection transistors formed on the semiconductor substrate in an array, each of the plurality of vertical selection transistors including a semiconductor pillar protruded from the semiconductor substrate, top region of the semiconductor pillar having a second type conductivity opposite to the first type conductivity provided in the semiconductor substrate; and a gate electrode surrounding the semiconductor pillar with a gate dielectric layer interposed therebetween, the gate electrode being lower in height than the semiconductor pillar; a plurality of contact studs disposed on top of the vertical selection transistors; a plurality of resistive memory elements disposed on top of the contact studs; a plurality of parallel word lines connecting the vertical selection transistors by way of respective gate electrodes, the parallel word lines extending along a first direction; a plurality of parallel bit lines connecting the resistive memory elements, the parallel bit lines extending along a second direction different from the first direction provided in the parallel word lines; and a plurality of parallel source lines with the second type conductivity formed in top regions of the semiconductor substrate in between rows of the semiconductor pillars, wherein the source lines and the top regions of the semiconductor pillars function as source and drain, respectively.
摘要:
A method for forming a hard bias structure in a magnetoresistive sensor is disclosed. A magnetoresistive sensor having a soft magnetic bias layer, spacer layer, and a magnetoresistive layer, is formed over a substrate having a gap layer. A mask is formed over a portion of the magnetoresistive sensor structure to define a central region. The masked structure is ion milled to remove portions not shielded by the mask, to form the central region with sloped sides, and to expose a region of the gap layer laterally adjacent the sloped sides. A first underlayer is deposited onto at least the sloped sides at a high deposition angle. A second underlayer is deposited to at least partially overlap the first underlayer, and at a first lower deposition angle. A hard bias layer is deposited over at least a portion of the second underlayer, and at a second lower deposition angle.
摘要:
Magnetoresistive (MR) sensors have leads that overlap a MR structure and distribute current to the MR structure so that the current is not concentrated in small portions of the leads. An electrically resistive capping layer can be formed between the leads and the MR structure to distribute the current. The leads can include resistive layers and conductive layers, the resistive layers having a thickness-to-resistivity ratio that is greater than that of each of the conductive layers. The resistive layers may protect the conductive layers during MR structure etching, so that the leads have broad layers of electrically conductive material for connection to MR structures. The broad leads conduct heat better than the read gap material that they replace, further reducing the temperature at the connection between the leads and the MR structure.