摘要:
An apparatus may include a transceiver operable to receive a downlink message from a base station for a serving cell, the downlink message allocating a set of control parameters. The apparatus may also include a processor circuit communicatively coupled to the transceiver and an uplink power control module operable on the processor circuit to read the set of control parameters, and apply a signal-to-noise-and-interference (SINR) parameter based on the received set of control parameters to determine physical uplink shared channel (PUSCH) power to be applied for a PUSCH transmission. Other embodiments are disclosed and claimed.
摘要:
A method and apparatus to transmit pilot subcarriers over uplink channels. The pilot subcarriers includes symbols which hierarchically structured. The symbol includes a first split of at least two fractional frequency reuse (FFR) groups, a second split of a fractional frequency reuse (FFR) group to a distributed resource group and localized resource group and a third split of said distributed resource group and localized resource group into plurality of subchannels.
摘要:
Systems and methods of providing a NPRACH preamble in a multefire system are described. A UE configured for multefire NB-IoT or eMTC operation receives, from an eNB, access information that includes a SIB on a narrowband channel of an unlicensed band. Based on the access information, the UE transmits a NPRACH preamble in two or six contiguous uplink subframes. The NPRACH preamble is transmitted in two or six contiguous subframes. When two subframes are used, four symbol groups each having a 266.7 μs CP and two symbols are transmitted without a gap therebetween. When six subframes are used, four symbol groups each having a 266.7 μs CP and five symbols are transmitted without a gap therebetween.
摘要:
This disclosure describes systems, methods, and devices related to long training field (LTF) sequence security protection. A device may determine a null data packet (NDP) frame comprising one or more fields. The device may determine a first long training field (LTF) and a second LTF, the first LTF and the second LTF being associated with a first frequency band of the NDP frame, wherein time domain LTF symbols of first LTF and the second LTF are generated using different LTF sequences. The device may determine a third LTF and a fourth LTF, the third LTF and the fourth LTF being associated with the a second frequency band of the NDP frame, wherein time domain LTF symbols of third LTF and the fourth LTF are generated using different LTF sequences. The device may cause to send the NDP frame to an initiating or a responding device. The device may cause to send a location measurement report (LMR) frame to the initiating or the responding device, wherein the LMR comprises timing information associated with the first frequency band and the second frequency band.
摘要:
Embodiments herein relate to wireless communication using combined channel training and physical layer header (SIG) signaling. Devices that comply with the 802.11ax or High Efficiency WLAN (HEW) standard may generate and transmit packets that include such combined information. The combined information may be beamformed to a receiver device via an OFDM signal, which may be decoded by the receiver device to obtain subsequent data included in the signal. For example, initial training symbols associated with channel training subcarriers in the signal may be detected and used to perform a rough estimate of the channel. The rough estimate may thereafter be refined using data symbols detected from adjacent data subcarriers using the channel training symbols. In this way, data subcarriers may also be used to determine a channel response along with channel training subcarriers. Channel training information may be transmitted with data, such as user-specific information, in a single symbol.
摘要:
Systems, methods, and devices for device-to-device (D2D) distributed scheduling are disclosed herein. User equipment (UE) is configured to measure a received power level for a reference signal received from a target UE and measure received power levels for reference signals received from one or more non-target UEs. The UE is configured to generate a resource usage map for the target UE and the one or more non-target UEs. The UE is configured to determine a priority, with respect to the target UE, for each resource element group based on the resource usage map and an anticipated signal-to-interference ratio (SIR). The UE is configured to transmit data to the target UE during one or more resource element groups with the highest priorities for the target UE.
摘要:
Embodiments described herein relate generally to a user equipment (“UE”) that is to transmit and receive signals associated with synchronization. The UE may be receive signals associated with synchronization from a plurality of synchronization sources, such as an evolved Node B (“eNB”), a global navigation satellite system (“GNSS”), or another UE. The UE may synchronize to a signal received from a synchronization source based on a priority associated with that synchronization source and/or signal. However, if the UE does not receive any signals associated with synchronization, the UE may generate and transmit a signal that indicates a request for synchronization.
摘要:
Embodiments of user equipment (UE) and methods for transmit power control for device-to-device (D2D) discovery operations and D2D communication in a cellular network are generally described herein. In some embodiments, the UE may configure a discovery signal for transmission on discovery resources from a configured resource pool for D2D discovery. The discovery signal may be transmitted at a transmit power level based on a relative location of the discovery resources with respect to uplink cellular resources in the frequency domain.
摘要:
An embodiment of the present invention provides an apparatus, comprising a transceiver adapted for hierarchical encoding for a Multicast Broadcast Service (MBS) in wireless networks, wherein the hierarchical encoding is provided by superposition coding to provide different levels of protection for data streams.
摘要:
Embodiments of computer-implemented methods, systems, computing devices, and computer-readable media are described herein for monitoring, by a mobile proxy associated with a control system of a cloud radio access network (“C-RAN”), application layer data traffic between the control system and a wireless communication device. In various embodiments, the mobile proxy may, based on the monitoring, facilitate alteration of data plane or control plane processing by the wireless communication device or a remote radio head (“RRH”) associated with the C-RAN.