Abstract:
In one embodiment, a medicament pump cartridge may include a reservoir configured to store a medicament, wherein the reservoir may be configured to transition between an expanded configuration when filled with medicament and a collapsed configuration when empty. The medicament pump cartridge may include an electromagnetic pumping mechanism, wherein the electromagnetic pumping mechanism includes at least one magnet secured to a membrane. Further, the medicament pump cartridge may include an electromagnetic valve operably coupled to the electromagnetic pumping mechanism. The pump cartridge may be configured to allow for secured refills through compatible ports. The pump cartridge may include light indicators for ports/orifice that communicate with pump, and possess sensor volumetric feedback for continuous monitoring of the medicament volume.
Abstract:
A fluid connector assembly is disclosed. The fluid connector assembly includes a body portion, a plug portion located on the body portion, the plug portion comprising a fluid path, a tubing, a first end of the tubing fluidly connected to the plug fluid path, a catch feature located on a first end of the body portion and configured to interact with a reservoir, and a latching feature located on a second end of the body portion, the latching feature configured to interact and lock onto the reservoir.
Abstract:
A micropump, which in particular is a pump for a medicinal active substance and which may be an insulin pump or an analgesic pump, has at least one valve, which has a valve chamber, and has a pump chamber. At least one immobile structural element, which reduces the valve chamber volume, is provided in the valve chamber.
Abstract:
The present invention involves, in some embodiments, mechanisms and methods of occluding collapsible tubing with an occluder to prevent fluid flow therethrough. In some embodiments, a tube occluding mechanism is disclosed that includes a bendable occluding member for creating a force that can be applied to a collapsible tube to occlude the tube. In some embodiments, the collapsible tube can be an inlet/outlet tube on a removable pumping cartridge that is coupled to a reusable pump drive component when the system is in operation. In such embodiments, the occluding mechanism can be attached to the reusable component and can be used to block fluid flow to and from the pumping cartridge. In some embodiments, the occluding member can comprises a spring plate which can create a force to occlude tubing when in a relaxed, unbent configuration, and which can be bent to unocclude the tubing. In some preferred embodiments, in a default configuration of the tube occluder mechanism (when no external force is applied to the occluding member) the tubes are occluded, so that the tube occluder mechanism provides a fail-safe configuration preventing fluid flow to and from a pumping cartridge to which the tubes can be connected.
Abstract:
A fluid delivery device includes a first housing and a second housing removably connected to the first housing. The fluid delivery device further includes an input line operatively connected to a fluid source that is external to each of the first housing and the second housing. A fluid reservoir is operably connected to the input line, and an output line is operably connected to the fluid reservoir. A pump is configured to facilitate a flow of fluid from the input line to the fluid reservoir and from the fluid reservoir to the output line. The fluid delivery device further includes a motor operably connected to the pump, a user interface, and a power source operably connected to the motor and to the user interface.
Abstract:
A repeater system may control a pump by using a repeater and a user interface. An adhesive patch system may be used for affixing a pump or other object to a human body. Such an adhesive patch system may include two sets of adhesive members, each member including an adhesive material on at least one side so as to attach to the body. The members of the first set are spaced to allow the members of the second set to attach to the body in spaces provided between the members of the first set, and the members of the second set are spaced to allow members of the first set to detach from the body without detaching the members of the second set. Also, fill stations and base stations are provided for personal pump systems.
Abstract:
A wearable infusion pump assembly includes a reservoir for receiving an infusible fluid, and an external infusion set configured to deliver the infusible fluid to a user. A fluid delivery system is configured to deliver the infusible fluid from the reservoir to the external infusion set. The fluid delivery system includes a volume sensor assembly, and a pump assembly for extracting a quantity of infusible fluid from the reservoir and providing the quantity of infusible fluid to the volume sensor assembly. The volume sensor assembly is configured to determine the volume of at least a portion of the quantity of fluid. The fluid delivery system further includes at least one optical sensor assembly configured to sense the movement of the pump assembly, a first valve assembly configured to selectively isolate the pump assembly from the reservoir, and a second valve assembly configured to selectively isolate the volume sensor assembly from the external infusion set.
Abstract:
Pump cassettes, wound-treatment apparatuses and methods. In some embodiments, a pump cassette comprises: a pump body having a pump chamber, an inlet valve in fluid communication with the pump chamber, and an outlet valve in fluid communication with the pump chamber; a diaphragm coupled to the pump body such that the diaphragm is movable to vary a volume in the pump chamber; and an identifier configured to store one or more properties of the pump cassette such that the identifier is readable by an automated reader to determine the one or more properties. In some embodiments, the pump cassette is configured to be removably coupled to a wound-treatment apparatus having an actuator such that the actuator can be activated to move the diaphragm.
Abstract:
Described is an infusion pump comprising electronic infusion regulating means with wired or wireless communication means and a power source, a medicament bag (7) and an infusion device, said infusion device being in fluid communication with said medicament bag (7) and comprising two valves (1, 2), a pressure cavity (4) provided between said two valves (1, 2) and a membrane (3) covering said cavity (4), wherein said infusion device comprises at least two active actuators, preferably either made of electroactive polymer so as to form a self actuating membrane (3) or made of shape memory alloy wire, one of said actuators being adapted to apply pressure to said membrane (3) for fluid displacement in said cavity (4), and the other of said actuators being adapted to operate one of said valves which is adapted to passively close in the flow direction of a fluid from said medicament bag (7) through the cavity (4), wherein the other of said valves is adapted to, in particular passively, close in a direction opposite to said flow direction.
Abstract:
Disclosed herein is a microfluidic pumping device having a piezoelectric member positioned above a displaceable membrane. A voltage is applied across the piezoelectric member causing the piezoelectric member to displace the membrane. Displacement of the membrane increases and decreases pressure in a cavity that is below the membrane. The increases and decreases in pressure actuate cantilevered check valve members to facilitate unidirectional liquid flow through the pumping device.