Abstract:
To provide a high cBN content ratio sintered body that improves fatigue life of the machined part and has a longer tool lifespan than conventional cBN sintered body tools by suppressing the production of the affected layer by machining formed on the machined surface of the workpiece to be cut and by promoting residual compression stress. That is a cBN sintered body according to the present invention is a cBN sintered body for high surface integrity machining having a cBN component of not less than 87% and not more than 99% by volume % and a thermal conductivity of 100 W/m·K or more; and the outermost surface of the cBN sintered body 1 is coated with a heat resistant film 2 having a thickness of 0.5 μm to 12 μm comprising a compound of at least one element selected from 4a, 5a, 6a group elements and Al, and at least one element selected from C, N, and O.
Abstract:
The present invention relates to a cutting tool for metal machining with improved wear properties, comprising a cutting tool substrate of cemented carbide, cermet, ceramics or a super hard material, and a wear resistant coating, wherein the wear resistant coating comprises a PVD Ti—Si—C—N layer, and a method of making thereof.
Abstract:
A method for modifying glassy surfaces including: producing nanoparticles; depositing the said nanoparticles on a surface; providing energy to the particles and/or surface so that the nanoparticles are at least partly diffused/dissolved into the glassy surface; and reducing the cohesive energy of the nanoparticles during the production of the nanoparticles or after the production of the nanoparticles.
Abstract:
In high efficiency cutting of very hard and hard-to-cut ferrous materials, compared with conventional cBN sintered body tools, the fatigue life of the machined part is improved and a longer lasting tool is provided by controlling the production of the affected layer by machining formed on the machined surface of the workpiece to be cut and by promoting residual of compression stress.The cBN sintered body related to the present invention has not less than 60% and not more than 95% of cBN components in volume, and has a thermal conductivity of 70 W/m·K or more; and the outermost surface thereof is coated with a heat resistant film comprising a compound of at least one element selected from 4a, 5a, 6a group elements and Al, and at least one element selected from C, N and O.
Abstract:
The invention is directed to a method of producing the material that is unaffected by the low-temperature degradation, humidity-enhanced phase transformation typical of yttria-stabilized zirconia, as well as of yttria-stabilized tetragonal zirconia polycrystalline ceramic (Y-TZP). Because of the high fracture toughness and high mechanical strength, this class of materials is widely used, including as implants, such as for the packaging material for small implantable neural-muscular sensors and stimulators. The destructive phase transformation rate is dramatically reduced by coating the surface of the Y-TZP component with dense alumina by a physical vapor deposition process, preferably ion beam assisted deposition.
Abstract:
A hard coating that is to be disposed on a surface of a body includes a diamond layer which includes a plurality of diamond grains and is doped with boron, and an outer layer which includes an intermetallic compound and is disposed on the diamond layer by a physical vapor deposition method.
Abstract:
A ceramic composition including a first ceramic material and a second ceramic material that is in the form of nano-, submicron-, or micron-sized particles, in which the first ceramic material has a lower melting point than the second ceramic material, and, when the first ceramic material melts into a liquid and the second ceramic material remains particulate, the second ceramic material floats at the top of the liquid. Also disclosed is a variant of this composition including a first ceramic material and a second ceramic material, in which the second ceramic material has a melting point higher than the first ceramic material, and, when the first ceramic material melts into a liquid, the second ceramic material partially or completely dissolves in the liquid.
Abstract:
This invention relates to a ceramic composite having a ceramic substrate and a ceramic layer disposed on the top surface of the substrate. The layer contains a multiplicity of nano-sized or micron-sized stalagmites, a multiplicity of nano-sized or micron-sized stalactites, a multiplicity of nano-sized or micron-sized columns, or a combination thereof. The invention also relates to a composition for and a method of making the ceramic composite.
Abstract:
An article comprising a substrate formed of a silicon-comprising material, such as an article exposed to the hostile thermal environment of a gas turbine engine. The article further comprises an environmental barrier layer, e.g., an alkaline earth metal aluminosilicate, and a top coat comprising hafnia stabilized with from about 0.5 mole % to about 10 mole % of an oxide of a metal selected from the group consisting of magnesium, calcium, scandium, yttrium, and lanthanide metals, and mixtures thereof. The article optionally comprises a transition layer between the environmental barrier layer and the top coat. A method for preparing a thermal/environmental barrier coating on a substrate formed of a silicon-comprising material is also disclosed.