Abstract:
THE DISCLOSED INVENTION RELATES TO FILMS FROM A NOVEL LATEX MIXTURE WHICH ARE NON-POROUS, MICROCELLULAR AND OPAQUE IN THE ABSENCE OF AN OPACIFYING AGENT. THE PREPARATION OF THE FILMS OF THE DISCLOSED INVENTION COMPRISES PROVIDING CONTROL TECHNIQUES FOR ENTRAPPING A SUFFICIENT AMOUNT OF A LIQUID NON-SOLVENT FOR THE POLYMER IN THE POLYMER MATRIX OF A LATEX AFTER THE CONTINOUS PHASE REMOVAL, SO THAT UPON EVAPORATION OF THE NONSOLVENT FROM A COALESCED AND TACK-FREE POLYMER MATRIX, A RESULTING OPAQUE
AND CONTINUOUS, NON-POROUS FILM IS PRODUCED WHICH WILL HAVE MINUTE, DISCRETE AND SUBSTANTIALLYCLOSED VOIDS AND WHICH IS OPAQUE IN THE ABSENCE OF AN OPACIFYING AGENT SUCH AS PIGMENT. THE DISCLOSED INVENTION ALSO RELATED TO OPAQUE FILMS WITH ENHANCED OPTICAL PROPERTIES PRODUCED BY THE INCLUSION OF PIGMENTS, FLORESCENT MATERIALS AND OPTICAL BRIGHTENERS IN THE OPAQUE FILMS IN SUCH A MANNER AS TO MAXIMIZE THEIR EFFECTIVENESS THEREIN.
Abstract:
An aerogel and drying method, the aerogel having a larger size, good productivity, and high transparency. The aerogel has a silsesquioxane structure and exhibits two exothermic peaks observed in a temperature range of 300 to 600° C. as measured by TG-DTA (thermogravimetry-differential thermal analysis) under an inert gas atmosphere containing 80% by volume of an inert gas and 20% by volume of oxygen. A method for producing aerogel includes a drying step including a first step in which an aerogel which has undergone condensation of a hydrolysate is placed in a liquid phase system having a first liquid phase and a second liquid phase; a second step in which a first solvent constituting the first liquid phase is evaporated from the first liquid phase at a temperature greater than room temperature; and a third step in which heating is still continued after the first liquid phase is evaporated off.
Abstract:
High strength biomedical materials and processes for making the same are disclosed. Included in the disclosure are nanoporous hydrophilic solids that can be extruded with a high aspect ratio to make high strength medical catheters and other devices with lubricious and biocompatible surfaces.
Abstract:
The present invention relates to a monolithic organic copolymer prepared by copolymerization of at least one monomer of the group consisting of styrene, (C1-C3)alkylstyrene, (meth)acrylic acid and esters thereof with a crosslinker in the presence of a macroporogen and a microporogen, wherein a) the sum of said at least one monomer of the group and the crosslinker is 10-20%, preferably 10-15%, by volume of the reaction mixture, with the rest being essentially macroporogen and microporogen, and the degree of said copolymerization is at least 70%, preferably at least 90%, more preferably at least 99%, or b) the sum of said at least one monomer of the group and the crosslinker is 30-50%, preferably 35-45%, by volume of the reaction mixture, with the rest being essentially macroporogen and microporogen, and the degree of said copolymerization is in the range of 25-60%, preferably 35-50%. These copolymers can be used in high-performance liquid chromatography for the separation of biopolymers as well as small molecules.
Abstract:
The present invention relates to a multi-layered microporous polyolefin film for a battery separator and a method for preparing the same. The microporous multi-layered film of the present invention has a characteristics to have both the low shutdown temperature conferred by the polyethylene and the high melt fracture temperature conferred by the polypropylene and heat-resistant filler. In addition, it has the high strength and stability conferred by the micropores prepared under wet process and the high permeability and high strength conferred by the macropores prepared under dry process. Therefore, this multi-layered film can be used effectively to manufacture a secondary battery with high capacity and high power.
Abstract:
The invention relates to a method for removing diluent from a polymer extrudate, especially in connection with a process for producing a microporous membrane. The method involves contacting the extrudate with a second solvent in a first stage; contacting the extrudate from the first stage with a third solvent in a second stage; conducting a first stream away from the first stage and/or conducting a second stream away from the second stage; and cooling at least a portion of the first and/or second stream and separating therefrom at least one of a first phase rich in the second solvent or a second phase rich in the third solvent.
Abstract:
The present invention relates to a porous gelatin material in the form of spherical particles with a continuous pore structure and cast, three-dimensional, porous gelatin structures. The invention also comprises methods for preparation of the porous gelatin materials and structures. The method for preparing the porous gelatin material in the form of spheres with a continuous pore structure comprises the steps of preparing a homogenous water-based gelatin solution, adding an emulsifier with an HLD value >9, adding a first composition comprising an organic solvent and an emulsifier with an HLB value >9, adding a second composition comprising an organic solvent and an emulsifier with an HLB value
Abstract:
The present invention features a method for the formation of superporous hydrogels using an ion-equilibration technique. Anionic polysaccharides are included in the hydrogel reaction mixture and cations are introduced either during or after hydrogel formation. Properties of the resulting hydrogel can be subsequently adjusted by treating the cation-complexed gel with a different cation or cation mixture under equilibrating conditions. It has been found that by properly adjusting the cations and the sequence in which they are used in the equilibration process, superporous hydrogels can be formed that are highly absorbent while maintaining favorable structural properties, including strength, ruggedness, and resiliency. It has also been found that applying appropriate dehydration conditions to them after their formation can further stabilize the superporous hydrogels formed by the method of the invention.
Abstract:
The present invention relates to a process for forming a foamed elastomeric polymer. The process involves forming a reverse emulsion of liquid droplets in a continuous liquid phase of polymer precursor and then polymerizing the precursor to entrap uniformly distributed droplets of the liquid in pores formed in the polymer bulk. The liquid in the pores is then removed under supercritical conditions.
Abstract:
A polymeric reticulated structure is prepared by mixing an ethylene-propylene copolymer having an ethylene content of at least 60% by weight or a thermoplastic block copolymer terminated with a crystalline ethylene block with a low molecular weight material. The low molecular weight material is trapped in the three-dimensional continuous network the copolymer forms.