Abstract:
A method of constructing a micro-engineered mass spectrometer from bonded silicon-on-insulator (BSOI) wafers is described with reference to a quadrupole spectrometer. The quadrupole geometry is achieved using two BSOI wafers (200), which are bonded together to form a monolithic block (410). Deep etched features and springs formed in the outer silicon layers are used to locate cylindrical metallic electrode rods (300). The precision of the assembly is determined by a combination of lithography and deep etching, and by the mechanical definition of the bonded silicon layers. Deep etched features formed in the inner silicon layers are used to define ion entrance and ion collection optics. Other features such as fluidic channels may be incorporated.
Abstract:
Three fundamental and three derived aspects of the present invention are disclosed. The three fundamental aspects each disclose a process sequence that may be integrated in a full process. The first aspect, designated as “latent masking”, defines a mask in a persistent material like silicon oxide that is held abeyant after definition while intervening processing operations are performed. The latent oxide pattern is then used to mask an etch. The second aspect, designated as “simultaneous multi-level etching (SMILE)”, provides a process sequence wherein a first pattern may be given an advanced start relative to a second pattern in etching into an underlying material, such that the first pattern may be etched deeper, shallower, or to the same depth as the second pattern. The third aspect, designated as “delayed LOCOS”, provides a means of defining a contact hole pattern at one stage of a process, then using the defined pattern at a later stage to open the contact holes. The fourth aspect provides a process sequence that incorporates all three fundamental aspects to fabricate an integrated liquid chromatography (LC)/electrrospray ionization (ESI) device. The fifth aspect provides a process sequence that incorporates two of the fundamental aspects to fabricate an ESI device. The sixth aspect provides a process sequence that incorporates two of the fundamental aspects to fabricate an LC device. The process improvements described provide increased manufacturing yield and design latitude in comparison to previously disclosed methods of fabrication.
Abstract:
An apparatus includes a semiconductor or dielectric wafer-substrate and first and second multi-layer structures located over the wafer-substrate. The first multi-layer structure includes an ionizer or an electronic ion detector. The second multi-layer structure includes an ion trap having entrance and exit ports. The ionizer or electronic ion detector has a port coupled to one of the ports of the ion trap.
Abstract:
A source of ions for an analyzer includes a reservoir for containing a liquid, a manifold having a plurality of nozzles, a conduit connecting the reservoir to the manifold and a counter electrode having a potential difference between the counter electrode and the nozzles to enable liquid to be ejected from the nozzles in droplets and to enable ions to be ejected from the droplets.
Abstract:
An electrospray ionization device incorporates a shaped thin film with a microfluidic channel. The device may be interfaced to a time-of-flight mass spectrometer (TFOMS). In one embodiment, the shaped thin film has a polygonal-shaped or triangle-shaped thin polymer tip formed by lithography and etching. The microfluidic channel is approximately 20 micrometer wide and 10 micrometers deep, and embossed in a substrate using a silicon master. The shaped thin film is aligned with the channel and bonded between the channel substrate and a flat plate to create a microfluidic channel with a wicking tip protruding from the end of the channel. Application of a high voltage at one end of the channel creates an electrospray from the tip, which is provided to the TFOMS.
Abstract:
An electrospray device is disclosed. The electrospray device comprises a substrate defining a channel between an entrance orifice on an injection surface and an exit orifice on an ejection surface, a nozzle defined by a portion recessed from the ejection surface surrounding the exit orifice, and an electrode for application of an electric potential to the substrate to optimize and generate an electrospray; and, optionally, additional electrode(s) to further modify the electrospray.
Abstract:
Method and apparatus for chromatographic high field asymmetric waveform ion mobility spectrometry, including a gas chromatographic analyzer section intimately coupled with an ionization section, an ion filter section, and an ion detection section, in which the sample compounds are at least somewhat separated prior to ionization, and ion filtering proceeds in a planar chamber under influence of high field asymmetric periodic signals, with detection integrated into the flow path, for producing accurate, real-time, orthogonal data for identification of a broad range of chemical compounds.
Abstract:
Microfluidic devices provide substances to a mass spectrometer. The microfluidic devices include first and second surfaces, at least one microchannel formed by the surfaces, and an outlet at an edge of the surfaces. Some embodiments also include a tip surface with one or more surface features for helping guide substances from the outlet of the device toward a mass spectrometer. In some embodiments, the surface feature(s) includes a groove, which may be hydrophilic along all or part of its length. Hydrophilic surfaces and/or hydrophobic surfaces may also help guide substances out of the outlet and/or toward the mass spectrometer. In some embodiments, the outlet and/or the tip surface is recessed back from an adjacent portion of the edge. A source of electrical potential can help move substances through the microchannel, separate substances and/or provide electrospray ionization.
Abstract:
Devices are disclosed that incorporate an ionization device for generating ions and electrons having first and second conductive electrodes that are separated by less than the mean-free-path of molecules being ionized. Electrons generated by the ionization device may be used for applications such as light sources, electron bombardment sensors, thyratrons, vacuum tubes, plasma displays, and microwave switches, and ions generated by the ionization device may be used, inter alia, in connection with ion focused milling devices, maskless ion implantation devices, ion beam lithography devices, semiconductor mask modification devices, and semiconductor chip wiring devices. Methods of use and manufacture are also provided.
Abstract:
A microchip-based electrospray ionization device and column with affinity adsorbents is disclosed. The invention includes a microchip array and a capillary tube or alone or attached in combination. At least a portion of the device or column has immobilized affinity adsorbents. Methods for using the device are provided as well for affinity capture of biomolecules to meet the needs for the modem life sciences such as proteomics and drug discover.