Abstract:
A method of programming an EEPROM, including: a first mode where a writing into cells is performed under a first voltage; and a second mode where the writing is performed under a second voltage smaller than the first one.
Abstract:
The present disclosure relates to a method for writing in an EEPROM memory, the method comprising steps of: storing the bits of a word to be written in first memory units, erasing a word to be modified, formed by first memory cells connected to a word line and first bit lines, reading bits stored in the memory cells of a word line WL , in a first read mode and storing the bits read in second memory units, reading in a second read mode the bits stored in the memory cells of the word line, and programming each memory cell of the word line connected to a memory unit storing a bit in the programmed state of the word to be written, of an erased word or of a word comprising a bit having different states in the first and second read modes.
Abstract:
The information bits and the parity bits are encrypted in a microcontroller and transmitted on a bus to a transceiver head which forms the frames to be transmitted on a channel from encrypted information bits and from encrypted parity bits received on the bus.
Abstract:
A method for writing and reading data memory cells, comprising: defining in a first memory zone erasable data pages and programmable data blocks; and, in response to write commands of data, writing data in erased blocks of the first memory zone, and writing, in a second memory zone, metadata structures associated with data pages and comprising, for each data page, a wear counter containing a value representative of the number of times that the page has been erased.
Abstract:
The present disclosure relates to a memory cell comprising a vertical selection gate extending in a trench made in a substrate, a floating gate extending above the substrate, and a horizontal control gate extending above the floating gate, wherein the floating gate also extends above a portion of the vertical selection gate over a non-zero overlap distance. Application mainly to the production of a split gate memory cell programmable by hot-electron injection.
Abstract:
The present disclosure relates to a memory comprising at least one word line comprising a row of split gate memory cells each comprising a selection transistor section comprising a selection gate and a floating-gate transistor section comprising a floating gate and a control gate. According to the present disclosure, the memory comprises a source plane common to the memory cells of the word line, to collect programming currents passing through memory cells during their programming, and the selection transistor sections of the memory cells are connected to the source plane. A programming current control circuit is configured to control the programming current passing through the memory cells by acting on a selection voltage applied to a selection line.
Abstract:
The present disclosure relates to a method for controlling a touch pad, comprising an object locate mode for locating an object on the touch pad comprising steps of: determining a measurement of capacitance of each of the pairs of electrodes of the touch pad, each pair comprising a row electrode and a column electrode transverse to the row electrode, comparing each measurement with a first detection threshold, and if the comparison of at least one measurement with the first threshold reveals the presence of an object on the touch pad, locating the object on the touch pad according to the capacitance measurements, the method comprising a proximity detection mode comprising steps of: determining a measurement representative of the capacitance between one or two electrodes and one or two other electrodes of the touch pad, and comparing a measurement obtained with a second detection threshold different from the first threshold.
Abstract:
A method includes generation of a first current proportional to absolute temperature and formation of a second current representative of the temperature variation of the threshold voltages of the transistors of the inverter and limited to a fraction of the first current. This fraction is less than one. The inverter is supplied with a supply current equal to the first current minus the limited second current.
Abstract:
The disclosure relates to an integrated circuit comprising a nonvolatile memory on a semiconductor substrate. The integrated circuit comprises a doped isolation layer implanted in the depth of the substrate, isolated conductive trenches reaching the isolation layer and forming gates of selection transistors of memory cells, isolation trenches perpendicular to the conductive trenches and reaching the isolation layer, and conductive lines parallel to the conductive trenches, extending on the substrate and forming control gates of charge accumulation transistors of memory cells. The isolation trenches and the isolated conductive trenches delimit a plurality of mini wells in the substrate, the mini wells electrically isolated from each other, each having a floating electrical potential and comprising two memory cells.