Abstract:
A gas cylinder transport cap is described. The cap has a bottom opening adapted for reversible attachment to a gas cylinder, where the attached cap surrounds a cylinder valve coupled to the gas cylinder. The cap also has a side surface which at least in part defines the perimeter of the bottom opening, where the side surface include a plurality of side openings; and a top surface formed on an opposite side of the cap from the bottom surface, where the top surface includes a top opening. The side openings and top opening improve transmissions of radio-frequency signals from a RFID device positioned inside the cylinder cap when the cap is attached to the gas cylinder. A method of tracking a gas cylinder transported between a first and second location is also described. The method may include the steps of coupling the gas cylinder to a RFID device, loading the gas cylinder on a transportation vehicle, and reading a gas cylinder identification signal transmitted by the RFID device with an RFID signal reader that translates the signal into gas cylinder identification data. The gas cylinder identification data may be associated with location data provided by a GPS device located in the transportation vehicle. The identification and location data may be communicated to gas cylinder tracking system that is remote from the transportation vehicle.
Abstract:
A gas cylinder residual gas volume indicator includes a carrier having a weight-receiving part and a pressure-applying part, a hydraulic cylinder having a cylinder body holding a hydraulic fluid and a cylinder piston stopped against the pressure-applying part of the carrier and movable with the pressure-applying part relative to the cylinder body to force the hydraulic fluid out of the cylinder body according to the weight received from a gas cylinder by the weight-receiving part, a hydraulic mechanical type meter having an index rotatable by a hydraulic fluid, and an oil pipe for guiding the hydraulic fluid out of the hydraulic cylinder into the meter to rotate the index.
Abstract:
Methods, apparatuses and systems directed to clathrate hydrate modular storage, applications and utilization processes. In one implementation, the present invention provides a method of creating scalable, easily deployable storage of natural gas and thermal energy by assembling an array of interconnecting, modular gas clathrate hydrate storage units.
Abstract:
The invention relates to a re-configured valve design to accommodate a high volume of product in the delivery system and the dispensation of product upon the application of a predetermined vacuum condition on the downstream side of the valve.
Abstract:
A pressurizable chamber device or containment vessel and method of use thereof. The device or vessel includes two chamber portions, a lid portion and a base portion, drawn to one another via a nut portion. The lid and base portions each include concave surfaces that matingly fit together, such that an internal chamber is formed when these portions are fit together. The lid and base portions each include a flange having a groove therein, such that a flexible seal element is fittable into the groove. The lid and base portions include features to matingly engage the nut portion, such that engagement thereamong draws the lid portion and the base portion toward one another, tightly sealing the formed internal chamber. A pressure, such as a resin pressure that may be precisely regulated, may then be applied, for example, to a mold contained within the formed and tightly sealed chamber.
Abstract:
The present invention generally provides methods and systems for reading information from a signal-emitting device, such as a wireless identification tag. In one embodiment, the method includes providing an electronic reading device mounted to a body-worn harness adapted to be worn on a body of a user. The method further includes detecting a predefined physical configuration assumed by at least a portion of the body by determining that a pressure value measured via a pressure sensor connected to the body-worn harness is above a threshold pressure value. In response to detecting the predefined physical configuration, the electronic reading device is activated. Upon being activated, the electronic reading device is configured to receive a signal from the signal-emitting device, the signal containing data pertaining to a physical object associated with the signal-emitting device.
Abstract:
Apparatus and method for dispensing a gas using a gas source coupled in selective flow relationship with a gas manifold. The gas manifold includes flow circuitry for discharging gas to a gas-using zone, and the gas source includes a pressure-regulated gas source vessel containing the gas at superatmospheric pressure. The pressure-regulated gas source vessel can be arranged with a pressure regulator at or within the vessel and a flow control valve coupled in flow relationship to the vessel, so that gas dispensed from the vessel flows through the regulator prior to flow through the flow control valve, and into the gas manifold. The apparatus and method permit an enhancement of the safety of storage and dispensing of toxic or otherwise hazardous gases used in semiconductor processes.
Abstract:
Fluid storage and dispensing systems, and processes for supplying fluids for use thereof. Various arrangements of fluid storage and dispensing systems are described, involving permutations of the physical sorbent-containing fluid storage and dispensing vessels and internal regulator-equipped fluid storage and dispensing vessels. The systems and processes are applicable to a wide variety of end-use applications, including storage and dispensing of hazardous fluids with enhanced safety. In a specific end-use application, reagent gas is dispensed to a semiconductor manufacturing facility from a large-scale, fixedly positioned fluid storage and dispensing vessel containing physical sorbent holding gas at subatmospheric pressure, with such vessel being refillable from a safe gas source of refill gas, as disclosed herein.
Abstract:
A method for storing a gas. In some embodiments, the method includes positioning a gas storage system under water, the gas storage system having a gas inlet and injecting gas through the gas inlet into the gas storage system, wherein the gas is compressed. The method may further include venting the compressed gas through the at least one gas port to a storage facility.
Abstract:
A portable liquid oxygen medical delivery system including a portable liquid oxygen delivery apparatus and a portable liquid oxygen recharger. The portable liquid oxygen delivery apparatus contains an initial quantity of liquid oxygen. The liquid oxygen delivery apparatus is sufficiently lightweight for portability by an ambulatory patient and has a fill port for receiving liquid oxygen. The liquid oxygen recharger stores a supplemental quantity of liquid oxygen and is also sufficiently lightweight for portability by an ambulatory individual. The liquid oxygen recharger has an interface for interfacing the liquid oxygen recharger with the portable liquid oxygen delivery apparatus for delivering the supplemental quantity of liquid oxygen to the portable liquid oxygen delivery apparatus.