Abstract:
Embodiments of the invention include apparatuses and methods relating to three dimensional transistors having high-k dielectrics and metal gates with fins protected by a hard mask layer on their top surface. In one embodiment, the hard mask layer includes an oxide.
Abstract:
A method including depositing a material for a gate electrode on a substrate over a dielectric material, the gate electrode material comprising a metal; depositing a capping material over the gate electrode material under processing conditions that will not promote any oxygen species associated with the gate electrode material to travel through the gate electrode material to the substrate; and patterning a gate electrode structure comprising the gate electrode material.
Abstract:
Embodiments herein describe techniques for a semiconductor device including a capacitor and a transistor above the capacitor. A contact electrode may be shared between the capacitor and the transistor. The capacitor includes a first plate above a substrate, and the shared contact electrode above the first plate and separated from the first plate by a capacitor dielectric layer, where the shared contact electrode acts as a second plate for the capacitor. The transistor includes a gate electrode above the substrate and above the capacitor; a channel layer separated from the gate electrode by a gate dielectric layer, and in contact with the shared contact electrode; and a source electrode above the channel layer, separated from the gate electrode by the gate dielectric layer, and in contact with the channel layer. The shared contact electrode acts as a drain electrode of the transistor. Other embodiments may be described and/or claimed.
Abstract:
Embodiments herein describe techniques for a thin-film transistor (TFT), which may include a substrate and a transistor above the substrate. The transistor includes a channel layer above the substrate, a gate dielectric layer adjacent to the channel layer, and a gate electrode separated from the channel layer by the gate dielectric layer. The gate dielectric layer includes a non-linear gate dielectric material. The gate electrode, the channel layer, and the gate dielectric layer form a non-linear capacitor. Other embodiments may be described and/or claimed.
Abstract:
An embodiment includes a microelectronic device comprising: a substrate comprising a raised portion and a non-raised portion, wherein a dielectric material is disposed adjacent the raised portion, an epitaxial sub-fin structure disposed on the raised portion, wherein a bottom portion of the epitaxial sub-fin structure comprises an asymmetric profile, and an epitaxial fin device structure disposed on the sub-fin structure. Other embodiments are described herein.
Abstract:
Semiconductor devices having germanium active layers with underlying diffusion barrier layers are described. For example, a semiconductor device includes a gate electrode stack disposed above a substrate. A germanium active layer is disposed above the substrate, underneath the gate electrode stack. A diffusion barrier layer is disposed above the substrate, below the germanium active layer. A junction leakage suppression layer is disposed above the substrate, below the diffusion barrier layer. Source and drain regions are disposed above the junction leakage suppression layer, on either side of the gate electrode stack.
Abstract:
Embodiments described include straining transistor quantum well (QW) channel regions with metal source/drains, and conformal regrowth source/drains to impart a uni-axial strain in a MOS channel region. Removed portions of a channel layer may be filled with a junction material having a lattice spacing different than that of the channel material to causes a uni-axial strain in the channel, in addition to a bi-axial strain caused in the channel layer by a top barrier layer and a bottom buffer layer of the quantum well.
Abstract:
Techniques are disclosed for enabling multi-sided condensation of semiconductor fins. The techniques can be employed, for instance, in fabricating fin-based transistors. In one example case, a strain layer is provided on a bulk substrate. The strain layer is associated with a critical thickness that is dependent on a component of the strain layer, and the strain layer has a thickness lower than or equal to the critical thickness. A fin is formed in the substrate and strain layer, such that the fin includes a substrate portion and a strain layer portion. The fin is oxidized to condense the strain layer portion of the fin, so that a concentration of the component in the strain layer changes from a pre-condensation concentration to a higher post-condensation concentration, thereby causing the critical thickness to be exceeded.
Abstract:
Different n- and p-types of device fins are formed by epitaxially growing first epitaxial regions of a first type material from a substrate surface at a bottom of first trenches formed between shallow trench isolation (STI) regions. The STI regions and first trench heights are at least 1.5 times their width. The STI regions are etched away to expose the top surface of the substrate to form second trenches between the first epitaxial regions. A layer of a spacer material is formed in the second trenches on sidewalls of the first epitaxial regions. Second epitaxial regions of a second type material are grown from the substrate surface at a bottom of the second trenches between the first epitaxial regions. Pairs of n- and p-type fins can be formed from the first and second epitaxial regions. The fins are co-integrated and have reduced defects from material interface lattice mismatch.
Abstract:
Transistor structures having channel regions comprising alternating layers of compressively and tensilely strained epitaxial materials are provided. The alternating epitaxial layers can form channel regions in single and multigate transistor structures. In alternate embodiments, one of the two alternating layers is selectively etched away to form nanoribbons or nanowires of the remaining material. The resulting strained nanoribbons or nanowires form the channel regions of transistor structures. Also provided are computing devices comprising transistors comprising channel regions comprised of alternating compressively and tensilely strained epitaxial layers and computing devices comprising transistors comprising channel regions comprised of strained nanoribbons or nanowires.