Abstract:
Methods, systems, and devices are described for calculating a push pressure for a pharmaceutical vial with a syringe, the method including accepting data regarding at least one parameter of the pharmaceutical vial, at least one parameter of a vial cap with a seal, at least one parameter of the syringe, and a single dose volume of a liquid pharmaceutical; calculating a volume of headspace over the liquid pharmaceutical with a computing device; calculating an ejection pressure based on the single dose volume of the liquid pharmaceutical and the volume of headspace; calculating a motive pressure based on a static force and a cross-sectional area of the syringe; defining the push pressure as the greater of the ejection pressure or the motive pressure; and reporting the push pressure to a user. The method further includes calculating a molar amount of inert gas needed in the pharmaceutical vial to generate the calculated push pressure.
Abstract:
Emulsion-based and micromolded (“MM”) or three dimensional printed (“3DP”) polymeric formulations for single injection of antigen, preferably releasing at two or more time periods, have been developed. Formulations are preferably formed of biocompatible, biodegradable polymers. Discrete regions encapsulating antigen, alone or in combination with other antigens, adjuvants, stabilizers, and release modifiers, are present in the formulations. Antigen is preferably present in excipient at the time of administration, or on the surface of the formulation, for immediate release, and incorporated within the formulation for release at ten to 45 days after initial release of antigen, optionally at ten to 90 day intervals for release of antigen in one or more additional time periods. Antigen may be stabilized through the use of stabilizing agents such as trehalose glass. In a preferred embodiment for immunization against polio, antigen is released at the time of administration, and two, four and six months thereafter.
Abstract:
Devices and methods for preparing and assessing a liquid sample are described which include: a microfluidic microscopy device including an absorbent structure including at least one dry dye for a liquid and configured to convey a polar liquid from a first end of the absorbent structure through the at least one dry dye for a liquid to a second end of the absorbent structure, a support structure positioned adjacent to a first surface of the absorbent structure, a lid structure positioned adjacent to a second surface of the absorbent structure, and a clamping structure positioned to maintain a relative position of the support structure and the lid structure to form a tapered internal chamber adjacent to the second end of the absorbent structure.
Abstract:
An embodiment of an apparatus includes a first component determiner configured to determine a component of a first signal, and an interpolator configured to interpolate a portion of the second signal in response to the component of the first signal. For example, such an apparatus may include an altitude-component determiner and an interpolator. The altitude-component determiner is configured to determine an altitude component of a first signal, and the interpolator is configured to interpolate an altitude component of a second signal in response to the altitude component of the first and to interpolate an empty portion of the second signal in response to the interpolated altitude component of the second signal.
Abstract:
An embodiment of an apparatus includes a first component determiner configured to determine a component of a first signal, a second component determiner configured to determine a component of a second signal, and an interpolator configured to interpolate a portion of the second signal in response to the components of the first and second signals. For example, such an apparatus may include an altitude-component determiner, a lapse-rate-component determiner, and an interpolator. The altitude-component determiner is configured to determine an altitude component of a first signal, and the lapse-rate-component determiner is configured to determine a lapse-rate component of a second signal having an empty portion. And the interpolator is configured to interpolate an altitude component of the second signal in response to the altitude component of the first signal, and to interpolate the empty portion of the second signal in response to the lapse-rate and altitude components of the second signal.
Abstract:
Systems include integrally sealed medicinal storage containers, including one or more segments of an ultra efficient insulation material, the one or more segments having one or more surface regions, the one or more segments principally defining at least one storage region, and one or more regions of substantially thermally sealed connections between at least one of the one or more surface regions of the one or more segments wherein the one or more regions of substantially thermally sealed connections and the one or more segments form an integrally thermally sealed medicinal storage region.
Abstract:
Systems include integrally sealed medicinal storage containers, including one or more segments of an ultra efficient insulation material, the one or more segments having one or more surface regions, the one or more segments principally defining at least one storage region, and one or more regions of substantially thermally sealed connections between at least one of the one or more surface regions of the one or more segments wherein the one or more regions of substantially thermally sealed connections and the one or more segments form an integrally thermally sealed medicinal storage region.
Abstract:
Systems, devices, and methods are described for providing a monitor/treatment device configured to, for example, detect hemozoin, as well as to monitor or treat a malarial infection.
Abstract:
An embodiment of a system includes a compartment-generating device, a compartment detector, and electronic computing circuitry. The device is configured to generate compartments of a digital assay, at least one of the compartments having a respective volume that is different from a respective volume of each of at least another one of the compartments. The detector is configured to determine a number of the compartments each having a respective number of a target that is greater than a threshold number of the target. And the electronic circuitry is configured to determine a bulk concentration of the target in a source of the sample in response to the determined number of compartments. Because such a system can be configured to estimate a bulk concentration of a target in a source from a polydisperse digital assay, the system can be portable, and lower-cost and faster, than conventional systems.
Abstract:
Portage storage containers including controlled evaporative cooling systems are described herein. In some embodiments, a portable container including an integral controlled evaporative cooling system includes: a storage region, an evaporative region adjacent to the storage region, a desiccant region adjacent to the outside of the container, and an insulation region positioned between the evaporative region and the desiccant region. A vapor conduit with an attached vapor control unit has a first end within the evaporative region and a second end within the desiccant region. In some embodiments, the controlled evaporative cooling systems are positioned in a radial configuration within the portable container.