Abstract:
The subject system hardware and methodology combine disparate cameras into a cohesive gesture recognition environment. To render an intended computer, gaming, display, etc. control function, two or more cameras with non-coaxial axes are trained on a space to detect and lock onto an object image regardless of its depth coordinate. Each camera captures one 2D view of the gesture and the plurality of 2D gestures are combined to infer the 3D input.
Abstract:
Hardware and software methodology are described for three-dimensional imaging in connection with a single sensor. A plurality of images is captured at different degrees of focus without focus change of an objective lens between such images. Depth information is extracted by comparing image blur between the images captured on the single sensor.
Abstract:
This disclosure relates to structures for the conversion of light into energy. More specifically, the disclosure describes devices for conversion of light to electricity using photovoltaic cells comprising graphene.
Abstract:
Systems, devices, and methods are described in which Intrinsic Frequency calculation (direct and/or by approximation) of a pulse pressure waveform is used make a determination of metabolic syndrome and/or insulin resistance or sensitivity. The pulse pressure waveform may be obtained non-invasively using a smartphone platform or be otherwise obtained.
Abstract:
Hardware and software methodology are described for cardiac health measurement. Hemodynamic waveforms variously acquired for a subject are analyzed to calculate or approximate intrinsic frequencies in two domains in two domains across the Dicrotic Notch. The intrinsic frequencies provide metrics/measures that correlate to the cardiac health of the subject. The systems may be used for monitoring a condition and/or is diagnosis. Exemplary uses include identifying (diagnosing) the presence of arrhythmia, heat failure, atrial fibrillation, aneurysms, vessel stenosis or aortic valve dysfunction and the necessity for valve replacement and/or monitoring congestive heart failure progression, together with identifying the acute need for hospitalization in connection with daily testing for any such condition.
Abstract:
A method and device for high-resolution three-dimensional (3-D) Imaging which obtains camera pose using defocusing is disclosed. The device comprises a lens obstructed by a mask having two sets of apertures. The first set of apertures produces a plurality of defocused images of the object which are used to obtain camera pose. The second set of optical filters produces a plurality of defocused images of a projected pattern of markers on the object. The images produced by the second set of apertures are differentiable from the images used to determine pose, and are used to construct a detailed 3-D image of the object. Using the known change in camera pose between captured images, the 3-D images produced can be overlaid to produce a high-resolution 3-D image of the object.
Abstract:
Embodiments described herein address the need for improved catheter devices for delivery, repositioning and/or percutaneous retrieval of the percutaneously implanted heart valves. One embodiment employs a plurality of spring-loaded arms releasably engaged with a stent frame for controlling expansion for valve deployment. Another embodiment employs a plurality of filaments passing through a distal end of a pusher sleeve and apertures in a self-expandable stent frame to control its state of deployment. With additional features, lateral positioning of the stent frame may also be controlled. Yet another embodiment includes plurality of outwardly biased arms held to complimentary stent frame features by overlying sheath segments. Still another embodiment integrates a visualization system in the subject delivery system. Variations on hardware and methods associated with the use of these embodiments are contemplated in addition to those shown and described.
Abstract:
A non-invasive and convenient method and apparatus for approximation of left ventricular end diastolic pressure (LVEDP) can be used in both hospital/clinic environments and nursing home or home environments. The method and apparatus use non-invasive sensors and a new “cardiac triangle” computational method to obtain an approximation of LVEDP. The computational method uses hemodynamic and electrocardiogram (ECG) waveforms as input, which can be collected by a portable device or devices.
Abstract:
Systems, methods and apparatuses are provided for the measurement of intraocular pressure. These systems, methods and apparatuses can include an imaging apparatus for capturing two- or three-dimensional images or video of a patient's eye. An image reconstruction based on the captured images or video can be performed, and measurements can be taken of blood vessel features, curvature metrics, or distances between point pairs. In some embodiments, blood pressure measurements can also be taken synchronously with the captured images or video. From these measurements, a relationship between certain medical condition (e.g., elevated intraocular pressure, heart arrhythmia) and the extracted metrics can be established.