Abstract:
A method of making a transistor for an integrated circuit includes providing a substrate and forming a dummy gate for the transistor within a gate trench on the substrate. The gate trench includes sidewalls, a trench bottom, and a trench centerline extending normally from a center portion of the trench bottom. The dummy gate is removed from the gate trench. A gate dielectric layer is disposed within the gate trench. A gate work-function metal layer is disposed over the gate dielectric layer, the work-function metal layer including a pair of corner regions proximate the trench bottom. An angled implantation process is utilized to implant a work-function tuning species into the corner regions at a tilt angle relative to the trench centerline, the tilt angle being greater than zero.
Abstract:
Devices and methods of fabricating integrated circuit devices for dynamically applying bias to back plates and/or p-well regions are provided. One method includes, for instance: obtaining a wafer with a silicon substrate, at least one first oxide layer, at least one silicon layer, and at least one second oxide layer; forming at least one recess in the wafer; depositing at least one third oxide layer over the wafer and filling the at least one recess; depositing a silicon nitride layer over the wafer; and forming at least one opening having sidewalls and a bottom surface within the filled at least one recess. An intermediate semiconductor device is also disclosed.
Abstract:
A method includes, for example, providing a starting semiconductor structure having a plurality of material lines disposed over a hard mask, and the hard mask disposed over a patternable layer, forming a protective layer over a portion of at least one material line, the at least one protected material line and at least one unprotected material line having a same critical dimension, oxidizing the at least one unprotected material line to increase the critical dimension compared to the first critical dimension of the at least one protected material line, and etching at least a portion of the oxidized unprotected material line so that the etched critical dimension of the at least one etched material line is different from the first critical dimension of the at least one protected material line.
Abstract:
A method includes, for example, a starting semiconductor structure comprising a plurality of material lines disposed over a hard mask, and the hard mask disposed over a patternable layer, forming a first protective layer over some of the plurality of material lines, the protected material lines and the unprotected material lines having a same corresponding first critical dimension, oxidizing the unprotected material lines so that the oxidized unprotected material lines have an increased second critical dimension greater than the first critical dimension, removing the first protective layer, forming a second protective layer over some of the plurality of protected material lines having the first critical dimension and some of the oxidized material lines having the second critical dimension, and oxidizing the unprotected material lines so that the oxidized unprotected material lines have an increased third critical dimension greater than the first critical dimension.
Abstract:
A multi-Vt FinFET includes a semiconductor substrate, multiple first fins coupled to the semiconductor substrate having a first fin pitch, and multiple second fins coupled to the semiconductor substrate having a second fin pitch larger than the first fin pitch. The semiconductor structure further includes transistor(s) on the multiple first fins, and transistor(s) on the multiple second fins, a threshold voltage of the transistor(s) on the multiple second fins being higher than that of the transistor(s) on the multiple first fins.
Abstract:
Shaped mandrels are used to form closed-loop spacer(s) around the shaped mandrels, after which the shaped mandrels are removed, leaving a closed-loop fin. A transistor includes U-shaped portion(s) of a closed-loop fin, and a gate across channel region(s) of the U-shaped portion(s) of a closed-loop fin. A semiconductor structure includes portion(s) of closed-loop fin(s), and transistors formed from the portion(s) of closed-loop fin(s).
Abstract:
Methods and structures for programmable device fabrication are provided. The methods for fabricating a programmable device include, for example forming at least one via opening in a layer of the programmable device and providing a catalyzing material over a lower surface of the at least one via opening; forming a plurality of nanowires or nanotubes in the at least one via opening using the catalyzing material as a catalyst for the forming of the plurality of nanowires or nanotubes; and providing a dielectric material in the at least one via opening so that the dielectric material surrounds the plurality of nanowires or nanotubes. The programmable device may, in subsequent or separate programming steps, have programming of the programmable device made permanent via thermal oxidation of the dielectric material and the plurality of nanowires or nanotubes, leaving a non-conducting material behind in the at least one via opening.
Abstract:
Methods are providing for fabricating transistors having at least one source region or drain region with a stressed portion. The methods include: forming, within a cavity of a substrate structure, the at least one source region or drain region with the internal stress; and resurfacing the at least one source region or drain region to reduce surface defects of the at least one source region or drain region without relaxing the stressed portion thereof. For instance, the resurfacing can include melting an upper portion of the at least one source region or drain region. In addition, the resurfacing can include re-crystallizing an upper portion of the at least one source region or drain region, and/or providing the at least one source region or drain region with at least one {111} surface.
Abstract:
A method of forming RMG multi-WF layers for an nFET and pFET, and the resulting device are provided. Embodiments include forming a Si fin; forming a nFET RMG trench and a pFET RMG trench; forming a first Ti layer in the nFET and pFET RMG trenches; implanting N2 in the first Ti layer vertically at a 0° implant angle in the pFET RMG trench; annealing the N2 implanted first Ti layer to form a TiN layer in the pFET RMG trench; stripping un-reacted Ti of the first Ti layer; forming a second Ti layer in the nFET and pFET RMG trenches; implanting Al or C in the second Ti layer vertically at 0°; annealing the Al or C implanted second Ti layer to form TiAl or TiC at a bottom of the nFET and pFET RMG trenches, respectively; and filling the nFET and pFET RMG trenches with Al or W.
Abstract:
Processes for forming merged CA/CB constructs and the resulting devices are disclosed. Embodiments include providing a replacement metal gate (RMG) between first and second sidewall spacers surrounded by an insulator on a substrate, the RMG having a dielectric layer directly on the first and second sidewall spacers and having metal on the dielectric layer; providing an oxide layer over the insulator, the first and second sidewall spacers, and the RMG; forming a source/drain contact hole through the oxide layer and the insulator, adjacent to the first sidewall spacer; forming a gate contact hole through the oxide layer over the source/drain contact hole and extending to the metal of the RMG; enlarging the source/drain contact hole to the metal of the RMG; and filling the enlarged source/drain contact hole and gate contact hole with metal.