Abstract:
Formation of band-edge contacts include, for example, providing an intermediate semiconductor structure comprising a substrate and a gate thereon and source/drain regions adjacent the gate, depositing a non-epitaxial layer on the source/drain regions, deposing a metal layer on the non-epitaxial layer, and forming metal alloy contacts from the deposited non-epitaxial layer and metal layer on the source/drain regions by annealing the deposited non-epitaxial layer and metal layer.
Abstract:
Integrated circuits and methods for fabricating integrated circuits are provided. In an embodiment, a method for fabricating an integrated circuit includes forming a channel region of a fin structure with a first side, a second side, an exposed first end surface and an exposed second end surface. A gate is formed overlying the first side and second side of the channel region. The method includes implanting ions into the channel region through the exposed first end surface and the exposed second end surface. Further, the method includes forming source/drain regions of the fin structure adjacent the exposed first end surface and the exposed second end surface of the channel region.
Abstract:
Methods of MOL S/D contact patterning of RMG devices without gouging of the Rx area or replacement of the dielectric are provided. Embodiments include forming a SOG layer around a RMG structure, the RMG structure having a contact etch stop layer and a gate cap layer; forming a lithography stack over the SOG and gate cap layers; patterning first and second TS openings through the lithography stack down to the SOG layer; removing a portion of the SOG layer through the first and second TS openings, the removing selective to the contact etch stop layer; converting the SOG layer to a SiO2 layer; forming a metal layer over the SiO2 layer; and planarizing the metal and SiO2 layers down to the gate cap layer.
Abstract:
A semiconductor structure includes a bulk silicon substrate and one or more silicon fins coupled to the bulk silicon substrate. Stress-inducing material(s), such as silicon, are epitaxially grown on the fins into naturally diamond-shaped structures using a controlled selective epitaxial growth. The diamond shaped structures are subjected to annealing at about 750° C. to about 850° C. to increase an area of (100) surface orientation by reshaping the shaped structures from the annealing. Additional epitaxial material is grown on the increased (100) area. Multiple cycles of increasing the area of (100) surface orientation (e.g., by the annealing) and growing additional epitaxial material on the increased area are performed to decrease the width of the shaped structures, increasing the space between them to prevent them from merging, while also increasing their volume.
Abstract:
Methods for fabricating a strained fin structure are provided which include: providing a virtual substrate material over a substrate structure, the virtual substrate material having a virtual substrate lattice constant and a virtual substrate lattice structure; providing a first material over a region of the virtual substrate material, the first material acquiring a strained first material lattice structure by, in part, conforming to the virtual substrate lattice structure; and etching a first fin pattern into the first material. The method may include providing a second material over a second region of the virtual substrate material, the second material acquiring a strained lattice structure by, in part, conforming to the virtual substrate lattice structure, and etching a fin pattern into the second material. The resultant device may have tensile strained fin structures or compressively strained fin structures, or both.
Abstract:
A device including a triple-layer EPI stack including SiGe, Ge, and Si, respectively, with Ga confined therein, and method of production thereof. Embodiments include an EPI stack including a SiGe layer, a Ge layer, and a Si layer over a plurality of fins, the EPI stack positioned between and over a portion of sidewall spacers, wherein the Si layer is a top layer capping the Ge layer, and wherein the Ge layer is a middle layer capping the SiGe layer underneath; and a Ga layer in a portion of the Ge layer between the SiGe layer and the Si layer.
Abstract:
A method of forming defect-free relaxed SiGe fins is provided. Embodiments include forming fully strained defect-free SiGe fins on a first portion of a Si substrate; forming Si fins on a second portion of the Si substrate; forming STI regions between adjacent SiGe fins and Si fins; forming a cladding layer over top and side surfaces of the SiGe fins and the Si fins and over the STI regions in the second portion of the Si substrate; recessing the STI regions on the first portion of the Si substrate, revealing a bottom portion of the SiGe fins; implanting dopant into the Si substrate below the SiGe fins; and annealing.
Abstract:
Methods are providing for fabricating transistors having at least one source region or drain region with a stressed portion. The methods include: forming, within a cavity of a substrate structure, the at least one source region or drain region with the internal stress; and resurfacing the at least one source region or drain region to reduce surface defects of the at least one source region or drain region without relaxing the stressed portion thereof. For instance, the resurfacing can include melting an upper portion of the at least one source region or drain region. In addition, the resurfacing can include re-crystallizing an upper portion of the at least one source region or drain region, and/or providing the at least one source region or drain region with at least one {111} surface.
Abstract:
A semiconductor structure includes a bulk silicon substrate and one or more silicon fins coupled to the bulk silicon substrate. Stress-inducing material(s), such as silicon, are epitaxially grown on the fins into naturally diamond-shaped structures using a controlled selective epitaxial growth. The diamond shaped structures are subjected to annealing at about 750° C. to about 850° C. to increase an area of (100) surface orientation by reshaping the shaped structures from the annealing. Additional epitaxy is grown on the increased (100) area. Multiple cycles of increasing the area of (100) surface orientation (e.g., by the annealing) and growing additional epitaxy on the increased area are performed to decrease the width of the shaped structures, increasing the space between them to prevent them from merging, while also increasing their volume.