Abstract:
Methods for fabricating integrated circuits using chemical mechanical planarization (CMP) for recessing metal are provided. In an embodiment, a method for fabricating an integrated circuit includes filling a trench with a metal and forming an overburden portion of the metal outside of the trench. The method further includes performing a planarization process with an etching slurry to remove the overburden portion of the metal and to recess the metal within the trench.
Abstract:
Greater planarity is achieved between surfaces of a conductive structure and a layer within which the conductive structure resides. A portion of the conductive structure protruding above the surface of the layer is selectively oxidized, at least in part, to form an oxidized portion. The oxidized portion is then removed, at least partially, to facilitate achieving greater planarity. The protruding portions may optionally be formed by selectively disposing conductive material over the conductive structure, when that the conductive structure is initially recessed below the surface of the layer. A further embodiment includes selectively oxidizing a portion of the conductive structure below the surface of the layer, removing at least some of the oxidized portion so that an upper surface of the conductive structure is below the upper surface of the layer, and planarizing the upper surface of the layer to the upper surface of the conductive structure.
Abstract:
One illustrative method disclosed herein includes forming a trench/via in a layer of insulating material, forming a barrier system comprised of at least one barrier material and at least two metallic elements, and performing a heating process to form a metal alloy comprised of the at least two metallic elements in the barrier system. Also disclosed is a device that comprises a trench/via in a layer of insulating material, a barrier system positioned in the trench/via, wherein the barrier system comprises at least one barrier material and a metal alloy comprised of at least two metallic elements that are comprised of materials other than the at least one barrier material, and a conductive structure positioned in the trench/via above the barrier system.
Abstract:
A method includes forming a trench/via in a layer of insulating material, forming a first layer comprised of silicon or germanium on the insulating material in the trench/via, forming a copper-based seed layer on the first layer, converting at least a portion of the copper-based seed layer into a copper-based nitride layer, depositing a bulk copper-based material on the copper-based nitride layer so as to overfill the trench/via and performing at least one chemical mechanical polishing process to remove excess materials positioned outside of the trench/via to thereby define a copper-based conductive structure. A device includes a layer of insulating material, a copper-based conductive structure positioned in a trench/via within the layer of insulating material and a copper-based nitride layer positioned between the copper-based conductive structure and the layer of insulating material, wherein the copper-based nitride layer contacts both of the copper-based conductive structure and the layer of insulating material.
Abstract:
Integrated circuits and methods for fabricating integrated circuits are provided. In an embodiment, a method for fabricating an integrated circuit includes forming a sacrificial gate structure over a semiconductor substrate. A spacer is formed around the sacrificial gate structure and a dielectric material is deposited over the spacer and semiconductor substrate. The method includes selectively etching the spacer to form a trench between the sacrificial gate structure and the dielectric material. The trench is bounded by a trench surface upon which a replacement spacer material is deposited. The method merges an upper region of the replacement spacer material to enclose a void within the replacement spacer material.
Abstract:
An approach for forming a semiconductor device is provided. In general, the device is formed by providing a metal layer, a cap layer over the metal layer, and an ultra low k layer over the cap layer. A via is then formed through the ultra low k layer and the cap layer. Once the via is formed, a barrier layer (e.g., cobalt (Co), tantalum (Ta), cobalt-tungsten-phosphide (CoWP), or other metal capable of acting as a copper (CU) diffusion barrier) is selectively applied to a bottom surface of the via. A liner layer (e.g., manganese (MN) or aluminum (AL)) is then applied to a set of sidewalls of the via. The via may then be filled with a subsequent metal layer (with or without a seed layer), and the device may the then be further processed (e.g., annealed).
Abstract:
Embodiments of the present disclosure may provide a method of forming an integrated circuit (IC) structure, the method including: forming a doped metal layer within a contact opening in an inter-level dielectric (ILD) material on a conductive region, such that the doped metal layer overlies the conductive region, the doped metal layer including a first metal doped with a second metal; and forming a contact to the conductive region within the contact opening of the ILD material by annealing the doped metal layer such that the second metal diffuses into the ILD material to form an interface liner directly between the annealed doped metal layer and the ILD material, the interface liner formed only on sidewalls of the contact opening and in direct contact with the ILD material and only at an interface of the doped metal layer and the ILD material.
Abstract:
An approach for forming a semiconductor device is provided. In general, the device is formed by providing a metal layer, a cap layer over the metal layer, and an ultra low k layer over the cap layer. A via is then formed through the ultra low k layer and the cap layer. Once the via is formed, a barrier layer (e.g., cobalt (Co), tantalum (Ta), cobalt-tungsten-phosphide (CoWP), or other metal capable of acting as a copper (CU) diffusion barrier) is selectively applied to a bottom surface of the via. A liner layer (e.g., manganese (MN) or aluminum (AL)) is then applied to a set of sidewalls of the via. The via may then be filled with a subsequent metal layer (with or without a seed layer), and the device may the then be further processed (e.g., annealed).
Abstract:
A conductive source/drain contact is formed within a trench overlying a raised epitaxial source/drain junction. The conductive contact includes a conductive liner and a conductive fill material formed directly over the conductive liner. The conductive fill material is selected from a platinum group metal such as ruthenium. The conductive liner may be directionally deposited into the trench and is adapted to form a metal silicide in situ through a reaction with the epitaxial layer.
Abstract:
Methods of forming interconnects. An interconnect opening is formed in a dielectric layer. A first conductor layer composed of a first metal is formed in the interconnect opening. A second conductor layer is formed inside the interconnect opening by displacing the first metal of the first conductor layer and replacing the first metal with a second metal different from the first metal.