-
51.
公开(公告)号:US20210408375A1
公开(公告)日:2021-12-30
申请号:US16915600
申请日:2020-06-29
Applicant: Intel Corporation
Inventor: Chelsey Dorow , Kevin O'Brien , Carl Naylor , Uygar Avci , Sudarat Lee , Ashish Verma Penumatcha , Chia-Ching Lin , Tanay Gosavi , Shriram Shivaraman , Kirby Maxey
Abstract: A transistor includes a channel including a first layer including a first monocrystalline transition metal dichalcogenide (TMD) material, where the first layer is stoichiometric and includes a first transition metal. The channel further includes a second layer above the first layer, the second layer including a second monocrystalline TMD material, where the second monocrystalline TMD material includes a second transition metal and oxygen, and where the second layer is sub-stoichiometric. The transistor further includes a gate electrode above a first portion of the channel layer, a gate dielectric layer between the channel layer and the gate electrode, a source contact on a second portion of the channel layer and a drain contact on a third portion of the channel layer, where the gate electrode is between drain contact and the source contact.
-
公开(公告)号:US20200312976A1
公开(公告)日:2020-10-01
申请号:US16363632
申请日:2019-03-25
Applicant: Intel Corporation
Inventor: Seung Hoon Sung , Jack Kavalieros , Ian Young , Matthew Metz , Uygar Avci , Devin Merrill , Ashish Verma Penumatcha , Chia-Ching Lin , Owen Loh
Abstract: Techniques and mechanisms to provide electrical insulation between a gate and a channel region of a non-planar circuit device. In an embodiment, the gate structure, and insulation spacers at opposite respective sides of the gate structure, each extend over a semiconductor fin structure. In a region between the insulation spacers, a first dielectric layer extends conformally over the fin, and a second dielectric layer adjoins and extends conformally over the first dielectric layer. A third dielectric layer, adjoining the second dielectric layer and the insulation spacers, extends under the gate structure. Of the first, second and third dielectric layers, the third dielectric layer is conformal to respective sidewalls of the insulation spacers. In another embodiment, the second dielectric layer is of dielectric constant which is greater than that of the first dielectric layer, and equal to or less than that of the third dielectric layer.
-
公开(公告)号:US20200286686A1
公开(公告)日:2020-09-10
申请号:US16296082
申请日:2019-03-07
Applicant: Intel Corporation
Inventor: Chia-Ching Lin , Sou-Chi Chang , Ashish Verma Penumatcha , Nazila Haratipour , Seung Hoon Sung , Owen Y. Loh , Jack Kavalieros , Uygar E. Avci , Ian A. Young
IPC: H01G7/06 , H01L49/02 , H01L27/108
Abstract: Described is a ferroelectric-based capacitor that improves reliability of a ferroelectric memory by using low-leakage insulating thin film. In one example, the low-leakage insulating thin film is positioned between a bottom electrode and a ferroelectric oxide. In another example, the low-leakage insulating thin film is positioned between a top electrode and ferroelectric oxide. In yet another example, the low-leakage insulating thin film is positioned in the middle of ferroelectric oxide to reduce the leakage current and improve reliability of the ferroelectric oxide.
-
54.
公开(公告)号:US20200279805A1
公开(公告)日:2020-09-03
申请号:US16647691
申请日:2017-11-03
Applicant: INTEL CORPORATION
Inventor: Sasikanth Manipatruni , Jasmeet S. Chawla , Chia-Ching Lin , Dmitri E. Nikonov , Ian A. Young , Robert L. Bristol
IPC: H01L23/522 , H01L23/528 , H01L27/22 , H01L21/768 , H01L43/02 , H01F10/32
Abstract: Techniques are disclosed for forming vias for integrated circuit structures. During an additive via formation process, a dielectric material is deposited, an etch stop layer is deposited, a checkerboard pattern is deposited on the etch stop layer, regions in the checkerboard pattern are removed where it is desired to have vias, openings are etched in the dielectric material through the removed regions, and the openings are filled with a first via material. This is then repeated for a second via material. During the subtractive via formation process, a first via material is deposited, an etch stop layer is deposited, a checkerboard pattern is deposited on the etch stop layer, regions in the checkerboard pattern are removed where it is not desired to have vias, openings are etched in the first via material through the removed regions. This is then repeated for a second via material.
-
公开(公告)号:US20190386662A1
公开(公告)日:2019-12-19
申请号:US16009110
申请日:2018-06-14
Applicant: Intel Corporation
Inventor: Chia-Ching Lin , Sasikanth Manipatruni , Dmitri Nikonov , Ian A. Young , Benjamin Buford , Tanay Gosavi , Kaan Oguz , John J. Plombon
IPC: H03K19/18 , H01L43/06 , H03K19/0944 , H01F10/32 , H01F41/30
Abstract: An apparatus is provided to improve spin injection efficiency from a magnet to a spin orbit coupling material. The apparatus comprises: a first magnet; a second magnet adjacent to the first magnet; a first structure comprising a tunneling barrier; a third magnet adjacent to the first structure; a stack of layers, a portion of which is adjacent to the third magnet, wherein the stack of layers comprises spin-orbit material; and a second structure comprising magnetoelectric material, wherein the second structure is adjacent to the first magnet.
-
公开(公告)号:US20190386208A1
公开(公告)日:2019-12-19
申请号:US16009035
申请日:2018-06-14
Applicant: Intel Corporation
Inventor: Chia-Ching Lin , Sasikanth Manipatruni , Tanay Gosavi , Dmitri Nikonov , Benjamin Buford , Kaan Oguz , John J. Plombon , Ian A. Young
Abstract: An apparatus is provided which comprises: a stack comprising a magnetoelectric (ME such as BiFeO3, (LaBi)FeO3, LuFeO3, PMN-PT, PZT, AlN, SmBiFeO3, Cr2O3, etc.) material and a transition metal dichalcogenide (TMD such as MoS2, MoSe2, WS2, WSe2, PtS2, PtSe2, WTe2, MoTe2, graphene, etc.); a magnet adjacent to a first portion of the TMD of the stack; a first interconnect adjacent to the magnet; a second interconnect adjacent to the ME material of the stack; and a third interconnect adjacent to a second portion of the TMD of the stack.
-
公开(公告)号:US12176388B2
公开(公告)日:2024-12-24
申请号:US16914137
申请日:2020-06-26
Applicant: Intel Corporation
Inventor: Kevin O'Brien , Chelsey Dorow , Kirby Maxey , Carl Naylor , Shriram Shivaraman , Sudarat Lee , Tanay Gosavi , Chia-Ching Lin , Uygar Avci , Ashish Verma Penumatcha
IPC: H01L29/04 , H01L21/02 , H01L27/092 , H01L29/06 , H01L29/20 , H01L29/267
Abstract: A transistor structure includes a first channel layer over a second channel layer, where the first and the second channel layers include a monocrystalline transition metal dichalcogenide (TMD). The transistor structure further includes a source material coupled to a first end of the first and second channel layers, a drain material coupled to a second end of the first and second channel layers, a gate electrode between the source material and the drain material, and between the first channel layer and the second channel layer and a gate dielectric between the gate electrode and each of the first channel layer and the second channel layer.
-
公开(公告)号:US12125893B2
公开(公告)日:2024-10-22
申请号:US18130334
申请日:2023-04-03
Applicant: Intel Corporation
Inventor: Tanay Gosavi , Chia-Ching Lin , Raseong Kim , Ashish Verma Penumatcha , Uygar Avci , Ian Young
IPC: H01L29/51 , H01L27/088 , H01L29/423 , H01L29/78 , H03H9/17
CPC classification number: H01L29/516 , H01L27/0886 , H01L29/42356 , H01L29/78391 , H01L29/7851 , H03H9/17
Abstract: Describe is a resonator that uses anti-ferroelectric (AFE) materials in the gate of a transistor as a dielectric. The use of AFE increases the strain/stress generated in the gate of the FinFET. Along with the usual capacitive drive, which is boosted with the increased polarization, additional current drive is also achieved from the piezoelectric response generated to due to AFE material. In some embodiments, the acoustic mode of the resonator is isolated using phononic gratings all around the resonator using the metal line above and vias' to body and dummy fins on the side. As such, a Bragg reflector is formed above or below the AFE based transistor. Increased drive signal from the AFE results in larger output signal and larger bandwidth.
-
公开(公告)号:US20240321987A1
公开(公告)日:2024-09-26
申请号:US18187990
申请日:2023-03-22
Applicant: Intel Corporation
Inventor: Tao Chu , Guowei Xu , Robin Chao , Chiao-Ti Huang , Feng Zhang , Minwoo Jang , Chia-Ching Lin , Biswajeet Guha , Yue Zhong , Anand S. Murthy
IPC: H01L29/423 , H01L27/088 , H01L29/06 , H01L29/66 , H01L29/775 , H01L29/78 , H01L29/786
CPC classification number: H01L29/42392 , H01L27/0886 , H01L29/0673 , H01L29/66439 , H01L29/66795 , H01L29/775 , H01L29/785 , H01L29/78696
Abstract: Described herein are integrated circuit devices that include both nanoribbon-based transistors and fin-shaped transistors. The nanoribbon transistors may have shorter channel lengths than the fin transistors. In addition, the nanoribbon transistors may have thinner gate dielectrics than the fin transistors.
-
公开(公告)号:US20240222428A1
公开(公告)日:2024-07-04
申请号:US18091206
申请日:2022-12-29
Applicant: Intel Corporation
Inventor: Chelsey Dorow , Carl H. Naylor , Kirby Maxey , Kevin O'Brien , Ashish Verma Penumatcha , Chia-Ching Lin , Uygar Avci , Matthew Metz , Sudarat Lee , Ande Kitamura , Scott B. Clendenning , Mahmut Sami Kavrik
IPC: H01L29/06 , H01L21/8234 , H01L27/088 , H01L29/04 , H01L29/08 , H01L29/22 , H01L29/778 , H01L29/786
CPC classification number: H01L29/0673 , H01L21/823412 , H01L27/0886 , H01L29/04 , H01L29/0847 , H01L29/22 , H01L29/778 , H01L29/78696
Abstract: A transistor has multiple channel regions coupling source and drain structures, and a seed material is between one of the source or drain structures and a channel material, which includes a metal and a chalcogen. Each channel region may include a nanoribbon. A nanoribbon may have a monocrystalline structure and a thickness of a monolayer, less than 1 nm. A nanoribbon may be free of internal grain boundaries. A nanoribbon may have an internal grain boundary adjacent an end opposite the seed material. The seed material may directly contact the first of the source or drain structures, and the channel material may directly contact the second of the source or drain structures.
-
-
-
-
-
-
-
-
-