Abstract:
A machine type communication interworking function (MTC-IWF) is configured to receive from a service capability exposure function (SCEF), services capability server (SCS), or a third-party application server (AS), application communication pattern information defined by an MTC application and representing characteristics of machine-to-machine (M2M) communications expected from a user equipment (UE) machine type communication (MTC) device. The MTC-IWF being configured to communicate the information to a mobility management entity (MME) that thereby provides core network (CN) originated assistance to an evolved universal terrestrial radio access network node B (eNB). Disclosed are embodiments for providing the information in the form of Diameter-based messages communicated through Tsp, T5, and other interfaces, or through an application programming interface (API) exposed by the SCEF, SCS, or MTC-IWF.
Abstract:
An evolved NodeB (eNB), user equipment (UE) and mobility management entity (MME), as well as method of communicating using a power saving mode (PSM) are generally described. A PSM configuration indication of the UE may be received at the eNB from the UE or MME in an Initial UE Context Setup Request, a UE Context Modify Request, core network assistance information, or a dedicated message to the eNB. The eNB may adjust the time for transmitting to the UE an RRC connection release message based on the PSM configuration indication. The eNB may determine whether the UE is in a connection mode and the inactivity timer of the eNB having reached the activation timer of the PSM configuration indication, transmit the RRC connection release message to the MME. The PSM configuration may be provided between eNBs during handover.
Abstract:
Disclosed herein are methods, apparatuses, and systems for utilizing lightweight communication protocols between different network components. A messaging process is utilized which includes a random access procedure for a user equipment (UE) and an eNodeB, and a messaging sequence comprising a reduced number of messages (compared to a legacy Radio Resource Control (RRC) Connection messaging sequence) exchanged between different nodes of the network to establish a connection. These messages can be generated using any combination of pre-configured or pre-determined data specific to either the UE or to lightweight communication protocols.
Abstract:
Embodiments of a User Equipment (UE) arranged for transmitting packets in a cellular network are disclosed herein. The UE can generate a first packet having a first packet classification information and a second packet having a second packet classification information. The first packet classification information can be associated with a different quality of service (QoS) requirement than the second packet classification information. The UE, using a packet filter, can determine, based on the first packet classification information, a first traffic flow from a plurality of traffic flows in a traffic flow template (TFT) for transmitting the first packet. Additionally, the UE can determine, based on the second packet classification information, a second traffic flow from the plurality of traffic flows for transmitting the second packet. Subsequently, the UE send the first packet to the first traffic flow and the second packet to the second traffic flow.
Abstract:
User Equipment (UE), computer readable medium, and method to determine a mobility of the UE are disclosed. The UE may include circuitry configured to determine a plurality of signals from a serving cell. The each signal of the plurality of signals may be one or more of: a reference signal receive power (RSRP), a reference signal receive quality (RSRQ), a received signal strength indicator (RSSI), a signal-to-noise ratio (SNR), a signal-to-interference-ratio (SIR), a signal-to-interference-plus-noise ratio (SINR), and a CQI. The circuitry may be configured to determine a measure for each of a window size of the plurality of signals. Each measure may be a variance of the plurality of signals, a standard deviation of the plurality of signals, a percent confidence interval (CI) of a mean of the measure, and a linear combination of measures. The circuitry may determine whether the UE is stationary based on one or more measures.
Abstract:
Embodiments of wireless communication devices and method for discontinuous reception (DRX) mode in RRC_IDLE state of wireless communication are generally described herein. Some of these embodiments describe a wireless communication device having processing circuitry arranged to determine to use an extended paging discontinuous reception (DRX) value to increase a paging cycle length. The wireless communication device may transmit a non-access stratum (NAS) message to the network, indicating that the wireless communication device desires to use the extended paging DRX value. The wireless communication device may receive a message from the network that includes an information element (IE) indicating whether the network supports the extended paging DRX value. Other methods and apparatuses are also described.
Abstract:
Embodiments of techniques and systems for extended discontinuous reception (DRX) are described herein. In some embodiments, a user equipment (UE) configured for extended DRX may include receiver circuitry and paging circuitry. The receiver circuitry may be configured to receive a system frame number from an eNB and receive extension data from the eNB. The paging circuitry may be configured to determine an augmented system frame number based on the system frame number and the extension data, determine a paging frame number based on the extension data, and monitor for paging occasions when the augmented system frame number is equal to the paging frame number. Other embodiments may be described and/or claimed.
Abstract:
A Narrowband-Internet-of-Things (NB-IoT) device may select between multiple carrier resources (of an anchor carrier and/or non-anchor carriers) to perform a Narrowband Physical Random Access Channel (NPRACH) procedure. The NB-IoT device may determine, based on a reference signal from an enhanced NodeB (eNB), a coverage level for the NB-IoT device and receive carrier configuration information, from the eNB, that indicates the carriers (e.g., an anchor carrier and one or more non-anchor carriers) that are available for NPRACH procedure. The NB-IoT device may select a carrier resource from among the carriers based on factors, such as the coverage level of the NB-IoT device and the Reference Signals Received Power (RSRP) thresholds and Repetition levels of the carrier resources. The NB-IoT device may use the selected carrier resource to initiate the NPRACH procedure.
Abstract:
An eNodeB (eNB) and user equipment (UE) are provided that detect whether the UE is in coverage enhancement mode and if so uses a modified version of the Radio Link Control (RLC) configuration in communications between the eNB and UE. Detection mechanisms may differ between the eNB and UE and may include direct signaling between the eNB and UE, the ability to receive control signaling only through particular modified signaling procedures, low power of certain received control signals or lack of response to certain control signals within various predetermined time periods. The modified RLC configuration permits a smaller amount of data than a standard RLC configuration to be transmitted by a transmitting device before a receiving device is able to be polled for information regarding reception by the receiving device of the transmitted data.
Abstract:
A user equipment having varied cell barring times is disclosed. The system includes circuitry and a control unit. The circuitry is configured to attempt cell selection of a cell and obtain barring information associated with the cell upon the cell being barred. The control unit is configured to initial selection of the cell and to determine a varied barring time at least partially based on the barring information and system characteristics upon the cell being barred.