Abstract:
A method is provided for forming an integrated circuit. A trench is formed in a substrate. Subsequently, a silicon-germanium feature is formed in the trench, and an etch stop layer is formed on the substrate and on the silicon-germanium feature. Lastly, a silicon device layer is formed on the etch stop layer. The silicon device layer has a tensily-strained region overlying the silicon-germanium feature. Regions of the silicon device layer not overlying the silicon-germanium feature are less strained than the tensily-strained region. The tensily-strained region of the silicon device layer may be further processed into channel features in n-type field effect transistors with improved charge carrier mobilities and device drive currents.
Abstract:
A method for forming a semiconductor device includes etching first fins into a bulk semiconductor substrate and exposing a portion of the first fins through a first dielectric layer formed over the first fins. A first film is deposited over the first fins in a region for n-type devices, and a second film is deposited over the first fins in a region for p-type devices. The first film and the second film are etched to form second fins in the regions for n-type devices and for the region for p-type devices. The second fins are protected. The first fins are removed from the first dielectric layer to form an isolation layer separating the second fins from the substrate.
Abstract:
A method for forming a fin on a substrate comprises patterning and etching a layer of a first semiconductor material to define a strained fin, depositing a layer of a second semiconductor material over the fin, the second semiconductor material operative to maintain the a strain in the strained fin, etching to remove a portion of the second semiconductor material to define a cavity that exposes a portion of the fin, etching to remove the exposed portion of the fin such that the fin is divided into a first segment and a second segment, and depositing an insulator material in the cavity, the insulator material contacting the first segment of the fin and the second segment of the fin.
Abstract:
A semiconductor structure includes a first strained fin portion and a second strained fin portion, a pair of inactive inner gate structures upon respective strained fin portions, and spacers upon outer sidewalls surfaces of the inactive inner gate structures, upon the inner sidewall surfaces of the inactive inner gate structures, and upon the first strained fin portion and the second strained fin portion end surfaces. The first strained fin portion and the second strained fin portion end surfaces are coplanar with respective inner sidewall surfaces of the inactive inner gate structures. The spacer formed upon the end surfaces limits relaxation of the first strained fin portion and the second strained fin portion and limits shorting between the first strained fin portion and the second strained fin portion.
Abstract:
Techniques for forming nanostructured materials are provided. In one aspect of the invention, a method for forming nanotubes on a buried insulator includes the steps of: forming one or more fins in a SOI layer of an SOI wafer, wherein the SOI wafer has a substrate separated from the SOI layer by the buried insulator; forming a SiGe layer on the fins; annealing the SiGe layer under conditions sufficient to drive-in Ge from the SiGe layer into the fins and form a SiGe shell completely surrounding each of the fins; and removing the fins selective to the SiGe shell, wherein the SiGe shell which remains forms the nanotubes on the buried insulator. A nanotube structure and method of forming a nanotube device are also provided.
Abstract:
A method for fabricating a semiconductor device, the method comprises forming a fin on a substrate, forming a dummy gate stack on the fin and the substrate, removing a portion of an exposed portion of the fin, forming a source/drain region on an exposed portion of the fin, forming a conductive contact on the source/drain region, removing the dummy gate stack to expose a channel region of the fin, implanting ions in the channel region of the fin, performing an annealing process, and forming a gate stack on the channel region of the fin.
Abstract:
A method for fabricating a self-aligned via structure includes forming a tri-layer mask on an ILD layer over a lower metal wiring layer, the tri-layer mask includes first and second insulating layers and a metal layer in between the insulating layers; defining a trench pattern through the first insulating layer and metal layer, the trench pattern having a first width; defining a first via pattern in a lithographic mask over the trench pattern, the first via pattern having a second width that is larger than the first width; growing a metal capping layer on an exposed sidewall of the trench pattern to decrease the first width to a third width that defines a second via pattern; transferring the trench pattern into the ILD layer to form a trench; and transferring the second via pattern through the ILD layer and into the metal wiring layer to form a via.
Abstract:
A method of forming a fin-based field-effect transistor device includes forming one or more first fins comprising silicon on a substrate, forming epitaxial layers on sides of the one or more first fins, and removing the one or more first fins to form a plurality of second fins.
Abstract:
A silicon germanium alloy is formed on sidewall surfaces of a silicon fin. An oxidation process or a thermal anneal is employed to convert a portion of the silicon fin into a silicon germanium alloy fin. In some embodiments, the silicon germanium alloy fin has a wide upper portion and a narrower lower portion. In such an embodiment, the wide upper portion has a greater germanium content than the narrower lower portion. In other embodiments, the silicon germanium alloy fin has a narrow upper portion and a wider lower portion. In this embodiment, the narrow upper portion of the silicon germanium alloy fin has a greater germanium content than the wider lower portion of the silicon germanium alloy fin.
Abstract:
A method of forming semiconductor fins includes forming a plurality of sacrificial template fins from a first semiconductor material; epitaxially growing fins of a second semiconductor material on exposed sidewall surfaces of the sacrificial template fins; and removing the plurality of sacrificial template fins.