Abstract:
Embodiments of a User Equipment (UE) to operate in accordance with a physical random access channel (PRACH) are disclosed herein. The UE may comprise hardware processing circuitry to determine a coverage enhancement category for the UE based on downlink channel statistics related to reception of downlink signals at the UE from an Evolved Node-B (eNB) and an uplink-downlink imbalance parameter related to uplink reception at the eNB. The hardware processing circuitry may be further to select, for use in a coverage enhancement mode, a PRACH preamble from a set of candidate PRACH preambles based on the determined coverage enhancement category for the UE. In some embodiments, at least some of the candidate PRACH preambles may span a different number of sub-frames.
Abstract:
Technology for a user equipment (UE) operable to report periodic channel state information (CSI) is disclosed. The UE can determine a reporting period (Npd) of the UE for a serving cell. The UE can identify a Time-Division Duplex (TDD) uplink-downlink (UL-DL) configuration of a primary cell of the UE. The UE can transmit a periodic CSI report for the serving cell to an evolved node B (eNB) using a physical uplink control channel (PUCCH) on the primary cell according to the reporting period. The UE can use the reporting period of Npd=1 for the serving cell if the TDD UL-DL configuration of the primary cell is one of 0, 1, 3, 4, or 6 and all UL subframes of the primary cell in a radio frame are used for periodic CSI reporting.
Abstract:
Technology for reporting periodic channel state information (CSI) is disclosed. One method can include determining a reporting period (Npd) of a user equipment (UE) for a serving cell. A Time-Division Duplex (TDD) uplink-downlink (UL-DL) configuration of a primary cell of the UE can be identified. A periodic CSI report for the serving cell can be transmitted, from the UE to the eNB, using a physical uplink control channel (PUCCH) on the primary cell according to the reporting period. The reporting period of Npd=1 can be used for the serving cell if the TDD UL-DL configuration of the primary cell is one of 0, 1, 3, 4, or 6 and all UL subframes of the primary cell in a radio frame are used for periodic CSI reporting.
Abstract:
Embodiments of the present disclosure are directed towards devices and methods for discovering and waking up dormant access nodes in cellular networks. In one embodiment, the user equipment may be configured with information to assist in determining a discovery zone of discovery signals transmitted by cells in a network. In some embodiments, the information may include a duration of a discovery zone.
Abstract:
A user equipment (UE) is disclosed. The UE can identify a downlink control channel. The UE can determine when the downlink control channel is an enhanced physical downlink control channel (EPDCCH). The UE can select an enhanced physical uplink control channel (PUCCH) resource allocation for a hybrid automatic retransmission re-quest-acknowledge (HARQ-ACK) transmission when the downlink control channel is the EPDCCH.
Abstract:
Technology for dual connectivity is disclosed. A user equipment (UE) can identify a first physical channel that includes a first uplink control information (UCI) and a second physical channel that includes a second UCI. The UE can select a priority level for the first physical channel and a priority level for the second physical channel. The UE can apply power scaling to a first physical channel transmission or a second physical channel transmission if a total transmit power of the UE would exceed a specific value during a period of time. The UE can scale a transmit power for the second physical channel if the priority level for the first physical channel is higher than the priority level for the second physical channel depending on a type of first UCI and a type of second UCI.
Abstract:
Disclosed in some examples is a method for providing a HARQ response in an LTE network for a PUCCH format 1b. The method includes receiving one or more downlink assignments of a bundling window over a wireless downlink control channel; setting a reception status for each sub-frame of a downlink data channel in the bundling window based on whether the sub-frame on the downlink data channel was associated with a particular one of the received downlink assignments and based upon whether the sub-frame was successfully received; setting a reception status of sub-frames of the downlink data channel in the bundling window that did not have a corresponding downlink assignment to a predetermined value; and transmitting a response, the response based upon the reception statuses set by the response module.
Abstract:
Embodiments of a User Equipment (UE) to operate in accordance with a physical random access channel (PRACH) are disclosed herein. The UE may comprise hardware processing circuitry to determine a coverage enhancement category for the UE based on downlink channel statistics related to reception of downlink signals at the UE from an Evolved Node-B (eNB) and an uplink-downlink imbalance parameter related to uplink reception at the eNB. The hardware processing circuitry may be further to select, for use in a coverage enhancement mode, a PRACH preamble from a set of candidate PRACH preambles based on the determined coverage enhancement category for the UE. In some embodiments, at least some of the candidate PRACH preambles may span a different number of sub-frames.
Abstract:
A wireless cellular device comprises physical layer circuitry configured to transmit and receive radio frequency electrical signals to communicate directly with one or more separate wireless devices using a communication channel of a cellular network and a WiFi communication channel of a WiFi communication spectrum; and processing circuitry configured to initiate transmission of a WiFi subframe via the WiFi communication channel to reserve communication time on the WiFi communication channel for use by the same or a different cellular device during the reserved communication time.
Abstract:
Embodiments of a User Equipment (UE) to operate in accordance with a physical random access channel (PRACH) are disclosed herein. The UE may comprise hardware processing circuitry to determine a coverage enhancement category for the UE based on downlink channel statistics related to reception of downlink signals at the UE from an Evolved Node-B (eNB) and an uplink-downlink imbalance parameter related to uplink reception at the eNB. The hardware processing circuitry may be further to select, for use in a coverage enhancement mode, a PRACH preamble from a set of candidate PRACH preambles based on the determined coverage enhancement category for the UE. In some embodiments, at least some of the candidate PRACH preambles may span a different number of sub-frames.