Abstract:
While a peer-to-peer (P2P) wireless network that includes both i) a first communication device and ii) a second communication device is not formed, and prior to the first communication device and the second communication device performing a group owner (GO) negotiation in connection with forming the P2P wireless network, the first communication device performs a ranging exchange with the second communication device. After performing the ranging exchange with the second communication device, the first communication device performs a GO negotiation with the second communication device.
Abstract:
A method for transmission of media access control (MAC) protocol data units (MPDUs) over a wireless local area network (WLAN) communication channel is described. A first physical layer (PHY) data unit is generated at a first communication device. The first PHY data unit has i) a data field that includes a first MPDU to be transmitted to a second communication device, and ii) a PHY signal field that includes a transmission version field set to indicate an initial transmission of the first MPDU. The first PHY data unit is transmitted over the WLAN communication channel to the second communication device. It is determined, at the first communication device, whether a first acknowledgment to the first MPDU has been received from the second communication device. In response to determining that the first acknowledgment has not been received, a second PHY data unit is generated at the first communication device. The second PHY data unit has i) a data field that includes the first MPDU, and ii) a PHY signal field that includes a transmission version field set to indicate a retransmission of the first MPDU. The second PHY data unit is transmitted over the WLAN communication channel to the second communication device.
Abstract:
A first wireless communication device including a distance determination module. The distance determination module is configured to calculate a distance between the first wireless communication device and a second wireless communication device. The first wireless communication device is configured to communicate with the second wireless communication device at one of a plurality of available data rates. A rate selection module is configured to select, based on the distance between the first wireless communication device and the second wireless communication device, a first data rate from the plurality of available data rates and/or adjust, based on the distance, the first data rate. The adjusted first data rate corresponds to a second data rate selected from the plurality of available data rates. A transceiver is configured to communicate with the second wireless communication device at the first data rate and/or the second data rate.
Abstract:
A method for transmitting a first field and one or more second fields is described. A number of devices in a group of multiple devices to which a first OFDMA data unit is to be transmitted is selected. A block allocation that indicates respective integer numbers of different tone blocks of a WLAN communication channel to be assigned to each device in the group of multiple devices is selected. A first field is encoded to indicate both the selected number of devices in the group and the selected block allocation. One or more second fields are encoded to indicate a respective device identifier for each device in the group of multiple devices. The first field and the one or more second fields are transmitted to each device in the group of multiple devices.
Abstract:
Systems and methods are provided for performing iterative interference cancellation. The systems and methods include receiving a plurality of codewords and processing the plurality of codewords using a channel decoder to obtain a decoder output. The systems and methods further include determining, based on the decoder output, whether a stopping criterion is satisfied, and cancelling interference from the plurality of codewords based on the decoder output in response to determining that the stopping criterion is not satisfied.
Abstract:
In a method implemented in a communication device configured to transmit PHY data units via a communication channel, first data and second data is received. The first data is modulated according to a first constellation having a first number of constellation points, and the second data is modulated according to a second constellation having a second number of constellation points higher than the first number of constellation points. The first data and the second data is parsed to a plurality of spatial streams such that a first subset of the spatial streams includes at least some of the modulated first data but none of the modulated second data, and a second subset of the spatial streams includes at least some of the modulated second data but none of the modulated first data. A single PHY data unit that includes the plurality of spatial streams is generated.
Abstract:
Systems and methods are provided for detecting a received synchronization signal. The method includes receiving, at a receiver, a signal from a transmitter and the signal includes the received synchronization signal. The method includes processing the received signal and a plurality of candidate synchronization signals to obtain a plurality of correlation signals. Each candidate synchronization signal is associated with one of the plurality of correlation signals. The method includes selecting, based at least in part on the plurality of correlation signals, one of the plurality of candidate synchronization signals. The selected candidate synchronization signal is correlated with the received synchronization signal. The method includes detecting the received synchronization signal based at least in part on (i) the received signal, and (ii) a characteristic obtained from the correlation signal that is associated with the selected candidate synchronization signal.
Abstract:
Methods and apparatus are provided for directing a beam towards a receiving device in the presence of interference. A beam transmitted by a transmission source is received by a received device. The beam shape is affected by signals transmitted by interfering sources. The receiving device computes channel estimates associated with the transmission source and the interfering sources. A feedback signal that represents the channel estimates associated with the transmission and interfering sources is transmitted to the transmission source. The transmission source changes characteristics of the beam to compensate for the interference caused by the interfering sources. The transmission source may change the characteristics of the beam by performing precoding algorithms.
Abstract:
Methods and apparatus are provided for adaptively selecting a communications mode in high frequency systems. A first dual-mode device having capabilities of using two or more high frequency communications modes, such as OFDM and SC modulation, may transmit a signal to a second dual-mode device with the same capabilities. The second dual-mode device may compute a channel characteristic associated with a high frequency communications channel and select an optimal high frequency communications mode. The second dual-mode device may transmit information indicative of the channel characteristic or the selected communications mode to the first dual-mode device. The first dual-mode device may select and operate using the optimal high frequency communications mode based on the information received from the second dual-mode device. The first and second dual-mode devices may communicate using the selected high frequency communications mode.
Abstract:
In a method of synchronizing time domain multiplexing interference mitigation schemes of at least a first, second, and third wireless communication link within a first, second, and third network, respectively, a first set of parameters defining a first set of time intervals is determined. The first set of time intervals is utilized to schedule transmissions of the first wireless communication link to reduce interference with transmissions of the second wireless communication link. A second set of parameters defining a second set of time intervals is determined. The second set of time intervals is utilized to schedule transmissions of the first wireless communication link to reduce interference with transmissions of the third wireless communication link. The second set of parameters is determined based at least in part on at least one of the first set of parameters.