Abstract:
A memcapacitor device includes a pair of opposing conductive electrodes. A semiconductive material including mobile dopants within a dielectric and a mobile dopant barrier dielectric material are received between the pair of opposing conductive electrodes. The semiconductive material and the barrier dielectric material are of different composition relative one another which is at least characterized by at least one different atomic element. One of the semiconductive material and the barrier dielectric material is closer to one of the pair of electrodes than is the other of the semiconductive material and the barrier dielectric material. The other of the semiconductive material and the barrier dielectric material is closer to the other of the pair of electrodes than is the one of the semiconductive material and the barrier dielectric material. Other implementations are disclosed, including field effect transistors, memory arrays, and methods.
Abstract:
A memcapacitor device includes a pair of opposing conductive electrodes. A semiconductive material including mobile dopants within a dielectric and a mobile dopant barrier dielectric material are received between the pair of opposing conductive electrodes. The semiconductive material and the barrier dielectric material are of different composition relative one another which is at least characterized by at least one different atomic element. One of the semiconductive material and the barrier dielectric material is closer to one of the pair of electrodes than is the other of the semiconductive material and the barrier dielectric material. The other of the semiconductive material and the barrier dielectric material is closer to the other of the pair of electrodes than is the one of the semiconductive material and the barrier dielectric material. Other implementations are disclosed, including field effect transistors, memory arrays, and methods.
Abstract:
Electronic devices may include a first substrate bearing circuitry components at a nanoscale pitch within the first substrate. The first substrate may include microscale bond pads on a surface of the first substrate. A via may electrically connect one of the microscale bond pads to one of the circuitry components. A second substrate may be electrically connected to at least one of the microscale bond pads. Methods of forming electronic devices may include positioning a first substrate adjacent to a second substrate. The first substrate may bear circuitry components at a nanoscale pitch within the first substrate. The first substrate may include microscale bond pads on a surface of the first substrate. A via may electrically connect one of the microscale bond pads to one of the circuitry components. The second substrate may be electrically connected to at least one of the microscale bond pads.
Abstract:
Some embodiments include photonic systems. The systems may include a silicon-containing waveguide configured to direct light along a path, and a detector proximate the silicon-containing waveguide. The detector may comprise a detector material which has a lower region and an upper region, with the lower region having a higher concentration of defects than the upper region. The detector material may comprise germanium in some embodiments. Some embodiments include methods of forming photonic systems.