摘要:
A novel oxotitanium complex represented by general formula (I) is disclosed: ##STR1## wherein R.sup.1 and R.sup.2 may be the same or different and each represents a hydrogen atom, a lower alkyl group, a lower alkoxy group, a halogen atom, a phenyl group, a substituted phenyl group, a trialkylsilyl group, a monoalkyldiphenylsilyl group, a dialkylmonophenylsilyl group, a triphenylsilyl group, a substituted triphenylsilyl group, or a lower alkoxycarbonyl group, provided that R.sup.1 and R.sup.2 may be bonded to each other to form a hydrocarbon ring or a substituted hydrocarbon ring in cooperation with the carbon atoms to which R.sup.1 and R.sup.2 are bonded; R.sup.3 and R.sup.4 may be the same or different and each represents a hydrogen atom, a lower alkyl group, a lower alkoxy group, a benzoyl group, a benzenesulfonyl group, or a halogen atom, provided that R.sup.3 and R.sup.4 may be bonded to each other to form a hydrocarbon ring or a substituted hydrocarbon ring in cooperation with the carbon atoms to which R.sup.3 and R.sup.4 are bonded; and n is 1 or 2. The novel oxotitanium complex is useful as an asymmetric reaction catalyst. A process for producing a .beta.-hydroxy ketone or an .alpha.-hydroxy carboxylic acid ester in the presence of the novel oxotitanium complex is also disclosed.
摘要:
A process for producing an optically active .beta.-hydroxyketone represented by formula (I): ##STR1## by catalytic asymmetrical aldol reaction is disclosed, comprising reacting a silyl-enol ether represented by formula (II): ##STR2## with a substituted aldehyde represented by formula (III):R.sup.5 CHO (III)in the presence of a binaphthol-titanium complex represented by formula (IV): ##STR3## An optically active .beta.-hydroxyketone is efficiently produced with diastereo-specificity and enantio-specificity.
摘要:
Disclosed is a selective ester production process of an alcoholic hydroxyl group, which proceeds under chemically mild conditions, while having adequate environmental suitability, operability and economical efficiency. Specifically disclosed is a process for producing an ester compound, which is characterized in that an alcohol and a carboxylic acid ester compound are reacted in the presence of a compound containing zinc element, thereby selectively acylating a hydroxyl group of the alcohol.
摘要:
The present invention provides a water-soluble transition metal-diamine complex which can be easily separated from reaction products through liquid separation, etc. and is recycleable; an optically active diamine compound constituting the ligand of the complex; and a catalyst for asymmetric synthesis which comprises these. The present invention relates to a water-soluble optically active transition metal-diamine complex represented by the formula (2): [wherein R1 and R2 each represents hydrogen, a hydrocarbon group, —SO2R13 (wherein R13 is a hydrocarbon group, substituted amino, etc.), etc.; R3 to R12 each represents hydrogen, a hydrocarbon group, alkoxy, substituted amino, etc.; M represents a transition metal; X represents halogen; L represents a ligand; and * indicates an asymmetric carbon atom; provided that at least one of R3 to R7 and R8 to R12 is substituted amino], a catalyst for asymmetric synthesis containing the complex, and a process for producing an optically active alcohol, which comprises using the catalyst to asymmetrically reduce a ketone.
摘要:
A novel transition metal complex, preferably a ruthenium-phosphine complex or rhodium-phosphine complex, which is effectively usable in various asymmetric syntheses and, in particular, is more effectively usable in the asymmetric hydrogenation of various ketones; and a novel process for producing an optically active alcohol with the complex. The novel transition metal complex includes a ligand obtained by introducing a diarylphosphino group into each of the 2- and 2′-positions of diphenyl ether, benzophenone, benzhydrol, or the like. It preferably further includes an optically active 1,2-diphenylethylenediamine coordinated thereto. The complex preferably is a novel diphosphine-ruthenium-optically active diamine complex or diphosphine-rhodium-optically active diamine complex. The process comprises using the complex as an asymmetric hydrogenation catalyst to conduct the asymmetric hydrogenation of a ketone compound to thereby obtain an optically active alcohol in a high optical purity and a high yield.
摘要:
Provided is a process for preparing an optically active ruthenium-phosphine complex represented by the following formula (1): wherein L represents a bidentate ligand compound of a tertiary phosphine; X represents a halogen atom; and * means chiral center (L* is an optically active substance), which comprises reacting a ruthenium-phosphine complex represented by: RumXnLpAq or [RuX(D)(L)]X wherein, X and L have the same meanings as described above (L is a racemic modification); A represents triethylamine (Et3N), etc.; and m, n, p and q each stands for an integer and D represents benzene, etc. with ½ equivalent of a specific optically active chiral diamine, thereby inactivating one of the enantiomers; and then with a specific optically active diamine derivative, thereby activating the other enantiomer.
摘要:
The present invention provides a method for producing novel optically active diphosphine compounds �2,2'-bis(di-substituted phosphino)-1,1'-binaphthyl compounds! having a selectivity (chemoselectivity or enantioselectivity) and catalytic activity different from those of conventional BINAP compounds. In a method of the present invention for producing an optically active diphosphine compound (i.e., 2,2-bis(di-substituted phosphino)-1,1'-binaphthyl), 2,2'-bis(trifluoromethanesulfonyloxy)-1,1'-binaphthyl is reacted, in the presence of a transition metal-phosphine complex, with a phosphineoxide compound represented by the following general formula: A.sub.2 P(O)H wherein A represents a phenyl group; a mono- to tri-substituted phenyl group, wherein each substituent in the substituted phenyl group is individually selected from the group consisting of a halogen atom, a lower alkyl group, a lower alkoxy group or a lower halogenated-alkoxy group such that one or more of the substituents may be the same or different; a naphthyl group; a lower-alkyl naphthyl group; or a lower-alkoxy naphthyl group.