Abstract:
A memory device includes an array of phase-change memory (PCM) cells and complementary PCM cells. A column decoder is coupled to the array of PCM cells and complementary PCM cells, and a sense amplifier is coupled to the column decoder. The sense amplifier includes a current integrator configured to receive first and second currents of a given PCM cell and complementary PCM cell, respectively. A current-to-voltage converter is coupled to the current integrator and is configured to receive the first and second currents, and to provide first and second voltages of the given PCM cell and complementary PCM cell to first and second nodes, respectively. A logic circuit is coupled to the first and second nodes and is configured to disable the column decoder and to discharge the bitline and complementary bitline voltages in response to the first and second voltages.
Abstract:
An integrated circuit includes an array of phase-change memory (PCM) cells, and bitlines coupled to the array of PCM cells. The integrated circuit also includes a first decoder circuit having a respective plurality of transistors having a first conductivity type being coupled together and to a given bitline from among the plurality thereof and configured to inject a program current pulse into a selected PCM cell. In addition, the integrated circuit includes a second decoder circuit having a plurality of transistors having a second conductivity type being coupled together and to the given bitline and configured to discharge the given bitline at an end of the program current pulse.
Abstract:
A voltage doubler circuit supports operation in a positive voltage boosting mode to positively boost voltage from a first node to a second node and operation in a negative voltage boosting mode to negatively boost voltage from the second node to the first node. The voltage doubler circuits receive two clock signals having different high voltage levels. A series of voltage doubler circuit are connected in a charge pump with controllable operation in the first and second modes. A connecting circuit interconnects the first and second nodes of the voltage doubler circuits to provide a first connection path, with a first input voltage, to support the positive voltage boosting mode operation and a second connection path, with a proper input voltage, to support the negative voltage boosting mode. A discharge circuit is provided to discharge the voltage doubler circuits when operation of the charge pump circuit is terminated.
Abstract:
A non-volatile memory cell for storing a single bit is disclosed. The non-volatile memory cell includes an access transistor including a gate, a first body, a first source/drain node, and a second source/drain node. The non-volatile memory cell also includes a first floating gate storage transistor that has a third source/drain node, a second body, a fourth source/drain node, and a first floating gate including a first storage node. The third source/drain node is coupled to the second source/drain node. The non-volatile memory cell further includes a first capacitor, a second capacitor, and a second floating gate storage transistor. The first capacitor has a first plate coupled to the first storage node and an opposite second plate. The second floating gate storage transistor includes a fifth source/drain node, a third body, a sixth source/drain node, a second floating gate including a second storage node. The fifth source/drain node is coupled to the fourth source/drain node. The second capacitor includes a third plate coupled to the second storage node and having an opposite fourth plate. The second plate is coupled to the fourth plate, and the first body of the access transistor is coupled to the second body and the third body.
Abstract:
An integrated circuit includes an array of phase-change memory (PCM) cells, and bitlines coupled to the array of PCM cells. The integrated circuit also includes a first decoder circuit having a respective plurality of transistors having a first conductivity type being coupled together and to a given bitline from among the plurality thereof and configured to inject a program current pulse into a selected PCM cell. In addition, the integrated circuit includes a second decoder circuit having a plurality of transistors having a second conductivity type being coupled together and to the given bitline and configured to discharge the given bitline at an end of the program current pulse.
Abstract:
An embodiment solution for operating a non-volatile memory of a complementary type is proposed. The non-volatile memory includes a plurality of sectors of memory cells, each memory cell being adapted to take a programmed state or an erased state. Moreover, the memory cells are arranged in locations each formed by a direct memory cell and a complementary memory cell. Each sector of the non-volatile memory is in a non-written condition when the corresponding memory cells are in equal states and is in a written condition wherein each location thereof stores a first logic value or a second logic value when the memory cells of the location are in a first combination of different states or in a second combination of different states, respectively. In an embodiment, a corresponding method includes the following steps: selecting at least one of the sectors, determining an indication of the number of memory cells in the programmed state and an indication of the number of memory cells in the erased state of the selected sector, and identifying the condition of the selected sector according to a comparison between the indication of the number of memory cells in the programmed state and the indication of the number of memory cells in the erased state.
Abstract:
According to various embodiments described herein, a circuit includes a decode logic circuit, a buffer coupled to the decode logic, a positive level shifter with an input coupled to receive address signals and an output coupled to the buffer, and a negative level shifter with an input coupled to receive the address signals and an output coupled to the buffer.
Abstract:
According to embodiments, a phase change memory (PCM) array includes a plurality of memory cells grouped into memory blocks. In the PCM array, each memory cell is a PCM cell. The PCM array also includes a plurality of erase flag cells. Each erase flag cell of the plurality of erase flag cells is associated with a memory block and indicates whether the memory block stores valid data or erased data.