摘要:
A resistor ladder network may be formed with a reduced space on a semiconductor substrate by patterning a plurality of layers of resistive polycrystalline silicon films spaced by insulating layers. Such a device includes a first insulating film formed on a semiconductor substrate, one or more serial-connected first resistors formed in a first polycrystalline silicon film provided on the semiconductor substrate via the first insulating film, a second insulating film provided on the first polycrystalline silicon film, one or more series-connected second resistors formed in a second polycrystalline silicon film provided apart from the first polycrystalline silicon film via the second insulating film, the second polycrystalline silicon film being connected to the first polycrystalline silicon film. A third insulating film is provided over the second polycrystalline silicon film, and metal wires provided on a surface of the second polycrystalline silicon film via contact holes formed in the third insulating film. Preferably, the first polycrystalline silicon film is thicker than the second polycrystalline silicon film, the impurity concentration of the first polycrystalline silicon film is lower than the impurity concentration of the second polycrystalline silicon film, and the grain size of the first polycrystalline silicon film is smaller than that of the second polycrystalline silicon film.
摘要:
A charge/discharge control circuit is provided for an electric power source apparatus in which a service life is prolonged. A voltage dividing circuit, an overcharge voltage detection circuit, an overdischarge voltage detection circuit and a control circuit are connected in parallel to a secondary cell which is an electric power source, wherein the control circuit detects a condition of the secondary cell from the overcharge/overdischarge voltage detection circuits and outputs a signal Vs for controlling a power supply to an external equipment and a charge by an external power source and controls a switching element provided in series with the voltage dividing circuit and reduces a current which flows through the voltage dividing circuit.
摘要:
A method of fabricating a semiconductor device comprises the steps of sequentially forming a first gate electrode and an insulating film over a transparent support substrate, forming a through-hole in the insulating film, forming a semiconductor single crystal silicon thin film over the transparent support substrate by epitaxial growth in the through-hole of the insulating film, forming a transistor element having a channel region formed in the semiconductor single crystal silicon thin film, and forming a second gate electrode over and electrically insulated from the channel region of the transistor element.
摘要:
A thin film field effect transistor has a three-layer structure including a polycrystalline semiconductor layer to be a channel region, a conductive layer to be a gate electrode and a insulating layer to be a gate insulating film between the channel region and the gate electrode. The roughness of an interface between the channel region and the gate insulating film is less than a few nm so that the current drivability of the transistor is improved.
摘要:
A semiconductor substrate is utilized to integrally form a drive circuit and a pixel array to produce a transparent semiconductor device for a light valve comprising a pixel array region and a drive circuit region on a major face of the semiconductor substrate. A stopper film is formed on the major face of the semiconductor substrate at the pixel array region, and a pixel array is formed over the silicon oxide stopper film. A drive circuit is formed on the drive circuit region, and silicon oxide posts are embedded in the major face of the semiconductor substrate at the drive circuit region. A thickness of the semiconductor substrate is then selectively removed from a back face opposite to the major face thereof to reach the stopper film. After the selective removing step, the portion of the semiconductor substrate under the pixel region is completely removed while a portion of the semiconductor substrate under the drive circuit region remains.
摘要:
A semiconductor integrated circuit comprises a semiconductor substrate of a first conductivity type, at least one electrically erasable floating gate type semiconductor non-volatile memory transistor disposed on a surface of the semiconductor substrate, a well region of a second conductivity type formed in the surface of the semiconductor substrate, and a program voltage switching transistor of the first conductivity type disposed in the well region. A field insulation film is disposed on the surface of the semiconductor substrate. A field dope region of the first conductivity type is provided beneath the field insulation film. The field dope region preferably has an impurity concentration higher than an impurity concentration of the semiconductor substrate. By this construction, current leakage is prevented at the time when a high voltage occurs such as, for example, when performing a writing operation with respect to EEPROM.
摘要:
A semiconductor device has an integrated circuit formed in a monosilicon layer provided on an electrically insulative material. The monosilicon layer has an integrated circuit formed thereon, and a passivation film covers the integrated circuit. A support member is fixed to the electrically insulative material through an adhesive layer to support the monosilicon layer. The integrated circuit comprises an MIS transistor having a source region, drain region, and channel region formed in the monosilicon layer. The semiconductor device is suitable for use in a high speed, high capacity liquid crystal light valve having a structure where a pixel switching element group and a peripheral driver circuit are formed integrally on a common substrate.
摘要:
Herein disclosed are a semiconductor device having a double-side wiring structure, in which a single crystal semiconductor thin film formed integrally with transistor elements is laminated on an insulating thin film and is formed with through holes and in which the insulating thin film is formed on its back with electrodes and a shielding film, and a light valve device using the semiconductor device. Over the single crystal semiconductor thin film, there are formed switching elements of transistors, pixel electrodes connected electrically with the switching elements, and drive circuits for scanning and driving the switching elements. Also disclosed is a miniature highly dense light valve device. In this light valve device, an electrooptical substance is arranged between a multi-layer substrate, which is formed with electrodes and a shielding film at the opposed side of the insulating film to the side formed with the grouped elements through the insulating film, and a transparent opposite substrate, so that the optical transparency of the electrooptical substance is controlled by the switching elements.
摘要:
The invention provides a semi-conductor light valve device and a process for fabricating the same. The device comprises a composite substrate having a supporte substrate, a light-shielding thin film formed on said supporte substrate and semiconductive thin film disposed on the light-shielding thin film with interposing an insulating thin film. A switching element made of a transistor and a transparent electrode for driving light valve are formed on the semiconductive thin film, and the switching element and the transparent electrode are connected electrically with each other. The transistor includes a channel region in the semiconductive thin film and a main gate electrode for controlling the conduction in the channel region, and the light-shielding thin film layer is so formed as to cover the channel region on the side opposite to said channel region, so as to prevent effectively a back channel and shut off the incident light.
摘要:
The invention is directed to a semiconductor nonvolatile memory of the floating gate type having dual gate structure comprised of a first channel region having a channel resistance controlled by a control gate electrode and a second channel region having a channel resistance controlled by a floating gate electrode. The first channel region is formed on one face section of semiconductor substrate which has a crystal face orientation different from that of another face section on which the second channel region is formed. By such construction, channel length of the first and second channel regions can be shortened to increase memory capacity density and to improve quality.