Abstract:
A semiconductor device with a novel structure is provided in which stored data can be held even when power is not supplied and the number of writing is not limited. The semiconductor includes a second transistor and a capacitor over a first transistor. The capacitor includes a source or drain electrode and a gate insulating layer of the second transistor and a capacitor electrode over an insulating layer which covers the second transistor. The gate electrode of the second transistor and the capacitor electrode overlap at least partly with each other with the insulating layer interposed therebetween. By forming the gate electrode of the second transistor and the capacitor electrode using different layers, an integration degree of the semiconductor device can be improved.
Abstract:
A semiconductor device including a nonvolatile memory cell in which a writing transistor which includes an oxide semiconductor, a reading transistor which includes a semiconductor material different from that of the writing transistor, and a capacitor are included is provided. Data is written to the memory cell by turning on the writing transistor and applying a potential to a node where a source electrode (or a drain electrode) of the writing transistor, one electrode of the capacitor, and a gate electrode of the reading transistor are electrically connected, and then turning off the writing transistor, so that the predetermined amount of charge is held in the node. Further, when a p-channel transistor is used as the reading transistor, a reading potential is a positive potential.
Abstract:
To read multilevel data from a memory cell having a transistor using silicon and a transistor using an oxide semiconductor, without switching a signal for reading the multilevel data in accordance with the number of the levels of the multilevel data. The electrical charge of a bit line is discharged, the potential of the bit line is charged via a transistor for writing data, and the potential of the bit line which is changed by the charging is read as multilevel data. With such a structure, the potential corresponding to data held in a gate of the transistor can be read by only one-time switching of a signal for reading data.
Abstract:
A semiconductor device in which an electrification phenomenon that leads to characteristic fluctuations, element deterioration, abnormality in shape, or dielectric breakdown is inhibited is provided. The semiconductor device includes a first region and a second region over the same plane. The first region includes a transistor. The second region includes a dummy transistor. The transistor includes a first wiring layer, a semiconductor layer including an oxide and provided above the first wiring layer, a second wiring layer provided above the semiconductor layer, and a third wiring layer provided above the second wiring layer. The dummy transistor has the same area as one or more selected from the first wiring layer, the second wiring layer, the semiconductor layer, and the third wiring layer.
Abstract:
A novel memory device is provided. Over a driver circuit layer, N memory layers (N is a natural number greater than or equal to 2) including a plurality of memory cells provided in a matrix are stacked. The memory cell includes two transistors and one capacitor. An oxide semiconductor is used as a semiconductor included in the transistor. The memory cell is electrically connected to a write word line, a selection line, a capacitor line, a write bit line, and a read bit line. The write bit line and the read bit line extend in the stacking direction, whereby the signal propagation distance from the memory cell to the driver circuit layer is shortened.
Abstract:
A novel semiconductor device is provided. The semiconductor device includes a driver circuit including a plurality of transistors using a silicon substrate for channels, and a first transistor layer and a second transistor layer including a plurality of transistors using a metal oxide for channels. The first transistor layer and the second transistor layer are provided over the silicon substrate layer. The first transistor layer includes a first memory cell including a first transistor and a first capacitor. The first transistor is electrically connected to a first local bit line. The second transistor layer includes a second transistor whose gate is electrically connected to the first local bit line and a first correction circuit electrically connected to the second transistor. The first correction circuit is electrically connected to a first global bit line. The first correction circuit has a function of holding a voltage corresponding to a threshold voltage of the second transistor in the gate of the second transistor.
Abstract:
A novel storage device and a novel semiconductor device are provided. In the storage device, a cell array including a plurality of memory cells is stacked above a control circuit, and the cell array operates separately in a plurality of blocks. Furthermore, a plurality of electrodes are included between the control circuit and the cell array. The electrode is provided for a corresponding block to overlap with the block, and a potential of the electrode can be changed for each block. The electrode has a function of aback gate of a transistor included in the memory cell, and a potential of the electrode is changed for each block, whereby the electrical characteristics of the transistor included in the memory cell can be changed. Moreover, the electrode can reduce noise caused in the control circuit.
Abstract:
A semiconductor device that can be highly integrated is provided. The semiconductor device includes a first transistor, a second transistor, a first capacitor, and a second capacitor. The first transistor includes an oxide over a first insulator, a second insulator over the oxide, a first conductor over the second insulator, a third insulator over the first conductor, a fourth insulator in contact with the second insulator, the first conductor, and the third insulator, and a fifth insulator in contact with the fourth insulator. The second transistor includes an oxide over the first insulator, a sixth insulator over the oxide, a second conductor over the sixth insulator, a seventh insulator over the second conductor, an eighth insulator in contact with the sixth insulator, the second conductor, and the seventh insulator, and a ninth insulator in contact with the eighth insulator. The first capacitor includes an oxide, a tenth insulator over the oxide, and a third conductor over the tenth insulator. The second capacitor includes an oxide, an eleventh insulator over the oxide, and a fourth conductor over the eleventh insulator.
Abstract:
An electric power charge and discharge system for an electronic device having a battery, by which the electronic device can be used for a long period of time. In a wireless communication device including a wireless driving portion including a first battery and a wireless charging portion including a second battery, the first battery is charged by electric power from a fixed power supply and the second battery is charged by using electromagnetic waves existing in an external space. Further, the first battery and the second battery are discharged alternately, and during a period in which the first battery is discharged, the second battery is charged.
Abstract:
A memory device includes a memory cell, a replica cell, a read circuit, a write wordline, a read wordline, a dummy read wordline, a write bitline, a read bitline, a reference bitline, a sourceline, and a first wiring. The memory cell is electrically connected to the write wordline, the read wordline, the write bitline, the read bitline, and the sourceline. The read circuit outputs a potential based on the result of comparing the potential of the reference bitline and the potential of the read bitline. The replica cell includes a first transistor and a second transistor. The first transistor and the second transistor are electrically connected to each other in series between the bitline and the sourceline. A gate of the first transistor and a gate of the second transistor are electrically connected to a dummy read wordline and the first wiring, respectively.